Non-intrusive head movement analysis of videotaped seizures of epileptic origin

In this work we propose a non-intrusive video analytic system for patient's body parts movement analysis in Epilepsy Monitoring Unit. The system utilizes skin color modeling, head/face pose template matching and face detection to analyze and quantify the head movements. Epileptic patients'...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mandal, B., How-Lung Eng, Haiping Lu, Chan, D. W. S., Yen-Ling Ng
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6063
container_issue
container_start_page 6060
container_title
container_volume 2012
creator Mandal, B.
How-Lung Eng
Haiping Lu
Chan, D. W. S.
Yen-Ling Ng
description In this work we propose a non-intrusive video analytic system for patient's body parts movement analysis in Epilepsy Monitoring Unit. The system utilizes skin color modeling, head/face pose template matching and face detection to analyze and quantify the head movements. Epileptic patients' heads are analyzed holistically to infer seizure and normal random movements. The patient does not require to wear any special clothing, markers or sensors, hence it is totally non-intrusive. The user initializes the person-specific skin color and selects few face/head poses in the initial few frames. The system then tracks the head/face and extracts spatio-temporal features. Support vector machines are then used on these features to classify seizure-like movements from normal random movements. Experiments are performed on numerous long hour video sequences captured in an Epilepsy Monitoring Unit at a local hospital. The results demonstrate the feasibility of the proposed system in pediatric epilepsy monitoring and seizure detection.
doi_str_mv 10.1109/EMBC.2012.6347376
format Conference Proceeding
fullrecord <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6347376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6347376</ieee_id><sourcerecordid>23367311</sourcerecordid><originalsourceid>FETCH-LOGICAL-i301t-b0d0af640e9b0f1fe9366af21ee605c11c0a160d7a4fd4d2c759667a765be48a3</originalsourceid><addsrcrecordid>eNo9UNtKAzEUjDdsrf0AESQ_sDVnc3_UUi9Q7YuCbyW7OdFI98JmW6hfb7HqvAzMDAMzhFwAmwAwez17up1Ocgb5RHGhuVYHZGy1ASG1Bm00HJIhSGkyoUAekTMQuRACwKrjncGsyJTRbwMyTumT7WDAcCZOySDnXGkOMCSL56bOYt136xQ3SD_QeVo1G6yw7qmr3WqbYqJNoJvoseldi54mjF_rDn9kbOMK2z6WtOnie6zPyUlwq4TjXx6R17vZy_Qhmy_uH6c38yxyBn1WMM9cUIKhLViAgJYr5UIOiIrJEqBkDhTz2onghc9LLa1S2mklCxTG8RG52ve266JCv2y7WLluu_xbtgtc7gMREf_t3x_5Nzl-YD8</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Non-intrusive head movement analysis of videotaped seizures of epileptic origin</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mandal, B. ; How-Lung Eng ; Haiping Lu ; Chan, D. W. S. ; Yen-Ling Ng</creator><creatorcontrib>Mandal, B. ; How-Lung Eng ; Haiping Lu ; Chan, D. W. S. ; Yen-Ling Ng</creatorcontrib><description>In this work we propose a non-intrusive video analytic system for patient's body parts movement analysis in Epilepsy Monitoring Unit. The system utilizes skin color modeling, head/face pose template matching and face detection to analyze and quantify the head movements. Epileptic patients' heads are analyzed holistically to infer seizure and normal random movements. The patient does not require to wear any special clothing, markers or sensors, hence it is totally non-intrusive. The user initializes the person-specific skin color and selects few face/head poses in the initial few frames. The system then tracks the head/face and extracts spatio-temporal features. Support vector machines are then used on these features to classify seizure-like movements from normal random movements. Experiments are performed on numerous long hour video sequences captured in an Epilepsy Monitoring Unit at a local hospital. The results demonstrate the feasibility of the proposed system in pediatric epilepsy monitoring and seizure detection.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 1424441196</identifier><identifier>ISBN: 9781424441198</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 9781457717871</identifier><identifier>EISBN: 1457717875</identifier><identifier>DOI: 10.1109/EMBC.2012.6347376</identifier><identifier>PMID: 23367311</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Epilepsy - physiopathology ; Face ; Face detection ; Feature extraction ; Head Movements ; Humans ; Image color analysis ; Magnetic heads ; Skin ; Skin - physiopathology ; Support Vector Machine ; Videotape Recording</subject><ispartof>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, Vol.2012, p.6060-6063</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6347376$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6347376$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23367311$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mandal, B.</creatorcontrib><creatorcontrib>How-Lung Eng</creatorcontrib><creatorcontrib>Haiping Lu</creatorcontrib><creatorcontrib>Chan, D. W. S.</creatorcontrib><creatorcontrib>Yen-Ling Ng</creatorcontrib><title>Non-intrusive head movement analysis of videotaped seizures of epileptic origin</title><title>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>EMBC</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>In this work we propose a non-intrusive video analytic system for patient's body parts movement analysis in Epilepsy Monitoring Unit. The system utilizes skin color modeling, head/face pose template matching and face detection to analyze and quantify the head movements. Epileptic patients' heads are analyzed holistically to infer seizure and normal random movements. The patient does not require to wear any special clothing, markers or sensors, hence it is totally non-intrusive. The user initializes the person-specific skin color and selects few face/head poses in the initial few frames. The system then tracks the head/face and extracts spatio-temporal features. Support vector machines are then used on these features to classify seizure-like movements from normal random movements. Experiments are performed on numerous long hour video sequences captured in an Epilepsy Monitoring Unit at a local hospital. The results demonstrate the feasibility of the proposed system in pediatric epilepsy monitoring and seizure detection.</description><subject>Epilepsy - physiopathology</subject><subject>Face</subject><subject>Face detection</subject><subject>Feature extraction</subject><subject>Head Movements</subject><subject>Humans</subject><subject>Image color analysis</subject><subject>Magnetic heads</subject><subject>Skin</subject><subject>Skin - physiopathology</subject><subject>Support Vector Machine</subject><subject>Videotape Recording</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>1424441196</isbn><isbn>9781424441198</isbn><isbn>9781457717871</isbn><isbn>1457717875</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9UNtKAzEUjDdsrf0AESQ_sDVnc3_UUi9Q7YuCbyW7OdFI98JmW6hfb7HqvAzMDAMzhFwAmwAwez17up1Ocgb5RHGhuVYHZGy1ASG1Bm00HJIhSGkyoUAekTMQuRACwKrjncGsyJTRbwMyTumT7WDAcCZOySDnXGkOMCSL56bOYt136xQ3SD_QeVo1G6yw7qmr3WqbYqJNoJvoseldi54mjF_rDn9kbOMK2z6WtOnie6zPyUlwq4TjXx6R17vZy_Qhmy_uH6c38yxyBn1WMM9cUIKhLViAgJYr5UIOiIrJEqBkDhTz2onghc9LLa1S2mklCxTG8RG52ve266JCv2y7WLluu_xbtgtc7gMREf_t3x_5Nzl-YD8</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Mandal, B.</creator><creator>How-Lung Eng</creator><creator>Haiping Lu</creator><creator>Chan, D. W. S.</creator><creator>Yen-Ling Ng</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20120101</creationdate><title>Non-intrusive head movement analysis of videotaped seizures of epileptic origin</title><author>Mandal, B. ; How-Lung Eng ; Haiping Lu ; Chan, D. W. S. ; Yen-Ling Ng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i301t-b0d0af640e9b0f1fe9366af21ee605c11c0a160d7a4fd4d2c759667a765be48a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Epilepsy - physiopathology</topic><topic>Face</topic><topic>Face detection</topic><topic>Feature extraction</topic><topic>Head Movements</topic><topic>Humans</topic><topic>Image color analysis</topic><topic>Magnetic heads</topic><topic>Skin</topic><topic>Skin - physiopathology</topic><topic>Support Vector Machine</topic><topic>Videotape Recording</topic><toplevel>online_resources</toplevel><creatorcontrib>Mandal, B.</creatorcontrib><creatorcontrib>How-Lung Eng</creatorcontrib><creatorcontrib>Haiping Lu</creatorcontrib><creatorcontrib>Chan, D. W. S.</creatorcontrib><creatorcontrib>Yen-Ling Ng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mandal, B.</au><au>How-Lung Eng</au><au>Haiping Lu</au><au>Chan, D. W. S.</au><au>Yen-Ling Ng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Non-intrusive head movement analysis of videotaped seizures of epileptic origin</atitle><btitle>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>EMBC</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><spage>6060</spage><epage>6063</epage><pages>6060-6063</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>1424441196</isbn><isbn>9781424441198</isbn><eisbn>9781457717871</eisbn><eisbn>1457717875</eisbn><abstract>In this work we propose a non-intrusive video analytic system for patient's body parts movement analysis in Epilepsy Monitoring Unit. The system utilizes skin color modeling, head/face pose template matching and face detection to analyze and quantify the head movements. Epileptic patients' heads are analyzed holistically to infer seizure and normal random movements. The patient does not require to wear any special clothing, markers or sensors, hence it is totally non-intrusive. The user initializes the person-specific skin color and selects few face/head poses in the initial few frames. The system then tracks the head/face and extracts spatio-temporal features. Support vector machines are then used on these features to classify seizure-like movements from normal random movements. Experiments are performed on numerous long hour video sequences captured in an Epilepsy Monitoring Unit at a local hospital. The results demonstrate the feasibility of the proposed system in pediatric epilepsy monitoring and seizure detection.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23367311</pmid><doi>10.1109/EMBC.2012.6347376</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, Vol.2012, p.6060-6063
issn 1094-687X
1557-170X
1558-4615
language eng
recordid cdi_ieee_primary_6347376
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Epilepsy - physiopathology
Face
Face detection
Feature extraction
Head Movements
Humans
Image color analysis
Magnetic heads
Skin
Skin - physiopathology
Support Vector Machine
Videotape Recording
title Non-intrusive head movement analysis of videotaped seizures of epileptic origin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A07%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Non-intrusive%20head%20movement%20analysis%20of%20videotaped%20seizures%20of%20epileptic%20origin&rft.btitle=2012%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Mandal,%20B.&rft.date=2012-01-01&rft.volume=2012&rft.spage=6060&rft.epage=6063&rft.pages=6060-6063&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=1424441196&rft.isbn_list=9781424441198&rft_id=info:doi/10.1109/EMBC.2012.6347376&rft_dat=%3Cpubmed_6IE%3E23367311%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457717871&rft.eisbn_list=1457717875&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23367311&rft_ieee_id=6347376&rfr_iscdi=true