Non-intrusive head movement analysis of videotaped seizures of epileptic origin
In this work we propose a non-intrusive video analytic system for patient's body parts movement analysis in Epilepsy Monitoring Unit. The system utilizes skin color modeling, head/face pose template matching and face detection to analyze and quantify the head movements. Epileptic patients'...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6063 |
---|---|
container_issue | |
container_start_page | 6060 |
container_title | |
container_volume | 2012 |
creator | Mandal, B. How-Lung Eng Haiping Lu Chan, D. W. S. Yen-Ling Ng |
description | In this work we propose a non-intrusive video analytic system for patient's body parts movement analysis in Epilepsy Monitoring Unit. The system utilizes skin color modeling, head/face pose template matching and face detection to analyze and quantify the head movements. Epileptic patients' heads are analyzed holistically to infer seizure and normal random movements. The patient does not require to wear any special clothing, markers or sensors, hence it is totally non-intrusive. The user initializes the person-specific skin color and selects few face/head poses in the initial few frames. The system then tracks the head/face and extracts spatio-temporal features. Support vector machines are then used on these features to classify seizure-like movements from normal random movements. Experiments are performed on numerous long hour video sequences captured in an Epilepsy Monitoring Unit at a local hospital. The results demonstrate the feasibility of the proposed system in pediatric epilepsy monitoring and seizure detection. |
doi_str_mv | 10.1109/EMBC.2012.6347376 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6347376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6347376</ieee_id><sourcerecordid>23367311</sourcerecordid><originalsourceid>FETCH-LOGICAL-i301t-b0d0af640e9b0f1fe9366af21ee605c11c0a160d7a4fd4d2c759667a765be48a3</originalsourceid><addsrcrecordid>eNo9UNtKAzEUjDdsrf0AESQ_sDVnc3_UUi9Q7YuCbyW7OdFI98JmW6hfb7HqvAzMDAMzhFwAmwAwez17up1Ocgb5RHGhuVYHZGy1ASG1Bm00HJIhSGkyoUAekTMQuRACwKrjncGsyJTRbwMyTumT7WDAcCZOySDnXGkOMCSL56bOYt136xQ3SD_QeVo1G6yw7qmr3WqbYqJNoJvoseldi54mjF_rDn9kbOMK2z6WtOnie6zPyUlwq4TjXx6R17vZy_Qhmy_uH6c38yxyBn1WMM9cUIKhLViAgJYr5UIOiIrJEqBkDhTz2onghc9LLa1S2mklCxTG8RG52ve266JCv2y7WLluu_xbtgtc7gMREf_t3x_5Nzl-YD8</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Non-intrusive head movement analysis of videotaped seizures of epileptic origin</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mandal, B. ; How-Lung Eng ; Haiping Lu ; Chan, D. W. S. ; Yen-Ling Ng</creator><creatorcontrib>Mandal, B. ; How-Lung Eng ; Haiping Lu ; Chan, D. W. S. ; Yen-Ling Ng</creatorcontrib><description>In this work we propose a non-intrusive video analytic system for patient's body parts movement analysis in Epilepsy Monitoring Unit. The system utilizes skin color modeling, head/face pose template matching and face detection to analyze and quantify the head movements. Epileptic patients' heads are analyzed holistically to infer seizure and normal random movements. The patient does not require to wear any special clothing, markers or sensors, hence it is totally non-intrusive. The user initializes the person-specific skin color and selects few face/head poses in the initial few frames. The system then tracks the head/face and extracts spatio-temporal features. Support vector machines are then used on these features to classify seizure-like movements from normal random movements. Experiments are performed on numerous long hour video sequences captured in an Epilepsy Monitoring Unit at a local hospital. The results demonstrate the feasibility of the proposed system in pediatric epilepsy monitoring and seizure detection.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 1424441196</identifier><identifier>ISBN: 9781424441198</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 9781457717871</identifier><identifier>EISBN: 1457717875</identifier><identifier>DOI: 10.1109/EMBC.2012.6347376</identifier><identifier>PMID: 23367311</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Epilepsy - physiopathology ; Face ; Face detection ; Feature extraction ; Head Movements ; Humans ; Image color analysis ; Magnetic heads ; Skin ; Skin - physiopathology ; Support Vector Machine ; Videotape Recording</subject><ispartof>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, Vol.2012, p.6060-6063</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6347376$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6347376$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23367311$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mandal, B.</creatorcontrib><creatorcontrib>How-Lung Eng</creatorcontrib><creatorcontrib>Haiping Lu</creatorcontrib><creatorcontrib>Chan, D. W. S.</creatorcontrib><creatorcontrib>Yen-Ling Ng</creatorcontrib><title>Non-intrusive head movement analysis of videotaped seizures of epileptic origin</title><title>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>EMBC</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>In this work we propose a non-intrusive video analytic system for patient's body parts movement analysis in Epilepsy Monitoring Unit. The system utilizes skin color modeling, head/face pose template matching and face detection to analyze and quantify the head movements. Epileptic patients' heads are analyzed holistically to infer seizure and normal random movements. The patient does not require to wear any special clothing, markers or sensors, hence it is totally non-intrusive. The user initializes the person-specific skin color and selects few face/head poses in the initial few frames. The system then tracks the head/face and extracts spatio-temporal features. Support vector machines are then used on these features to classify seizure-like movements from normal random movements. Experiments are performed on numerous long hour video sequences captured in an Epilepsy Monitoring Unit at a local hospital. The results demonstrate the feasibility of the proposed system in pediatric epilepsy monitoring and seizure detection.</description><subject>Epilepsy - physiopathology</subject><subject>Face</subject><subject>Face detection</subject><subject>Feature extraction</subject><subject>Head Movements</subject><subject>Humans</subject><subject>Image color analysis</subject><subject>Magnetic heads</subject><subject>Skin</subject><subject>Skin - physiopathology</subject><subject>Support Vector Machine</subject><subject>Videotape Recording</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>1424441196</isbn><isbn>9781424441198</isbn><isbn>9781457717871</isbn><isbn>1457717875</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9UNtKAzEUjDdsrf0AESQ_sDVnc3_UUi9Q7YuCbyW7OdFI98JmW6hfb7HqvAzMDAMzhFwAmwAwez17up1Ocgb5RHGhuVYHZGy1ASG1Bm00HJIhSGkyoUAekTMQuRACwKrjncGsyJTRbwMyTumT7WDAcCZOySDnXGkOMCSL56bOYt136xQ3SD_QeVo1G6yw7qmr3WqbYqJNoJvoseldi54mjF_rDn9kbOMK2z6WtOnie6zPyUlwq4TjXx6R17vZy_Qhmy_uH6c38yxyBn1WMM9cUIKhLViAgJYr5UIOiIrJEqBkDhTz2onghc9LLa1S2mklCxTG8RG52ve266JCv2y7WLluu_xbtgtc7gMREf_t3x_5Nzl-YD8</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Mandal, B.</creator><creator>How-Lung Eng</creator><creator>Haiping Lu</creator><creator>Chan, D. W. S.</creator><creator>Yen-Ling Ng</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20120101</creationdate><title>Non-intrusive head movement analysis of videotaped seizures of epileptic origin</title><author>Mandal, B. ; How-Lung Eng ; Haiping Lu ; Chan, D. W. S. ; Yen-Ling Ng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i301t-b0d0af640e9b0f1fe9366af21ee605c11c0a160d7a4fd4d2c759667a765be48a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Epilepsy - physiopathology</topic><topic>Face</topic><topic>Face detection</topic><topic>Feature extraction</topic><topic>Head Movements</topic><topic>Humans</topic><topic>Image color analysis</topic><topic>Magnetic heads</topic><topic>Skin</topic><topic>Skin - physiopathology</topic><topic>Support Vector Machine</topic><topic>Videotape Recording</topic><toplevel>online_resources</toplevel><creatorcontrib>Mandal, B.</creatorcontrib><creatorcontrib>How-Lung Eng</creatorcontrib><creatorcontrib>Haiping Lu</creatorcontrib><creatorcontrib>Chan, D. W. S.</creatorcontrib><creatorcontrib>Yen-Ling Ng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mandal, B.</au><au>How-Lung Eng</au><au>Haiping Lu</au><au>Chan, D. W. S.</au><au>Yen-Ling Ng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Non-intrusive head movement analysis of videotaped seizures of epileptic origin</atitle><btitle>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>EMBC</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><spage>6060</spage><epage>6063</epage><pages>6060-6063</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>1424441196</isbn><isbn>9781424441198</isbn><eisbn>9781457717871</eisbn><eisbn>1457717875</eisbn><abstract>In this work we propose a non-intrusive video analytic system for patient's body parts movement analysis in Epilepsy Monitoring Unit. The system utilizes skin color modeling, head/face pose template matching and face detection to analyze and quantify the head movements. Epileptic patients' heads are analyzed holistically to infer seizure and normal random movements. The patient does not require to wear any special clothing, markers or sensors, hence it is totally non-intrusive. The user initializes the person-specific skin color and selects few face/head poses in the initial few frames. The system then tracks the head/face and extracts spatio-temporal features. Support vector machines are then used on these features to classify seizure-like movements from normal random movements. Experiments are performed on numerous long hour video sequences captured in an Epilepsy Monitoring Unit at a local hospital. The results demonstrate the feasibility of the proposed system in pediatric epilepsy monitoring and seizure detection.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23367311</pmid><doi>10.1109/EMBC.2012.6347376</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1094-687X |
ispartof | 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, Vol.2012, p.6060-6063 |
issn | 1094-687X 1557-170X 1558-4615 |
language | eng |
recordid | cdi_ieee_primary_6347376 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Epilepsy - physiopathology Face Face detection Feature extraction Head Movements Humans Image color analysis Magnetic heads Skin Skin - physiopathology Support Vector Machine Videotape Recording |
title | Non-intrusive head movement analysis of videotaped seizures of epileptic origin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A07%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Non-intrusive%20head%20movement%20analysis%20of%20videotaped%20seizures%20of%20epileptic%20origin&rft.btitle=2012%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Mandal,%20B.&rft.date=2012-01-01&rft.volume=2012&rft.spage=6060&rft.epage=6063&rft.pages=6060-6063&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=1424441196&rft.isbn_list=9781424441198&rft_id=info:doi/10.1109/EMBC.2012.6347376&rft_dat=%3Cpubmed_6IE%3E23367311%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457717871&rft.eisbn_list=1457717875&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23367311&rft_ieee_id=6347376&rfr_iscdi=true |