Cell tracking and mitosis detection using splitting flow networks in phase-contrast imaging
Cell tracking is a crucial component of many biomedical image analysis applications. Many available cell tracking systems assume high precision of the cell detection module. Therefore low performance in cell detection can heavily affect the tracking results. Unfortunately cell segmentation modules o...
Gespeichert in:
Veröffentlicht in: | 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2012-01, Vol.2012, p.5310-5313 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5313 |
---|---|
container_issue | |
container_start_page | 5310 |
container_title | 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society |
container_volume | 2012 |
creator | Massoudi, A. Semenovich, D. Sowmya, A. |
description | Cell tracking is a crucial component of many biomedical image analysis applications. Many available cell tracking systems assume high precision of the cell detection module. Therefore low performance in cell detection can heavily affect the tracking results. Unfortunately cell segmentation modules often have significant errors, especially in the case of phase-contrast imaging. In this paper we propose a tracking method that does not rely on perfect cell segmentation and can deal with uncertainties by exploiting temporal information and aggregating the results of many frames. Our tracking algorithm is fully automated and can handle common challenges of tracking such as cells entering/exiting the screen and mitosis events. To handle the latter, we modify the standard flow network and introduce the concept of a splitting node into it. Experiment results show that adding temporal information from the video microscopy improves the cell/mitosis detection and results in a better tracking system. |
doi_str_mv | 10.1109/EMBC.2012.6347193 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6347193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6347193</ieee_id><sourcerecordid>23367128</sourcerecordid><originalsourceid>FETCH-LOGICAL-i334t-87d83ed8ca49613f375b1947196c242b1d6ef5e8a72fcbf56c7ecdeccc2446a33</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxeM_3Jz7ACJIvkBnb5Im6aOW-QcmvigIPow0vZ1xXVuajOG3t2XT-3Iv_A6Hew4hVxDPAOL0dv5yn81YDGwmuVCQ8iMyTZUGkSgFSis4JmNIEh0JCckJuQDBhBAAqTztQZyKSGr1MSJT77_jfjRoHotzMmKcSwVMj8lnhlVFQ2fs2tUrauqCblxovPO0wIA2uKamWz8w31YuhOEqq2ZHawy7plt76mrafhmPkW3q3sgH6jZm1esuyVlpKo_Tw56Q94f5W_YULV4fn7O7ReQ4FyHSqtAcC22NSCXwkqskh3TIKy0TLIdCYpmgNoqVNi8TaRXaAq3tqZCG8wm52fu223yDxbLt-ge6n-Vfyl5wvRc4RPzHh075L5Z0ZR0</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cell tracking and mitosis detection using splitting flow networks in phase-contrast imaging</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Massoudi, A. ; Semenovich, D. ; Sowmya, A.</creator><creatorcontrib>Massoudi, A. ; Semenovich, D. ; Sowmya, A.</creatorcontrib><description>Cell tracking is a crucial component of many biomedical image analysis applications. Many available cell tracking systems assume high precision of the cell detection module. Therefore low performance in cell detection can heavily affect the tracking results. Unfortunately cell segmentation modules often have significant errors, especially in the case of phase-contrast imaging. In this paper we propose a tracking method that does not rely on perfect cell segmentation and can deal with uncertainties by exploiting temporal information and aggregating the results of many frames. Our tracking algorithm is fully automated and can handle common challenges of tracking such as cells entering/exiting the screen and mitosis events. To handle the latter, we modify the standard flow network and introduce the concept of a splitting node into it. Experiment results show that adding temporal information from the video microscopy improves the cell/mitosis detection and results in a better tracking system.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 1424441196</identifier><identifier>ISBN: 9781424441198</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 9781457717871</identifier><identifier>EISBN: 1457717875</identifier><identifier>DOI: 10.1109/EMBC.2012.6347193</identifier><identifier>PMID: 23367128</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Biomedical imaging ; Computational modeling ; Image edge detection ; Image segmentation ; Linear programming ; Logistics ; Microscopy ; Mitosis ; ROC Curve</subject><ispartof>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012-01, Vol.2012, p.5310-5313</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6347193$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6347193$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23367128$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Massoudi, A.</creatorcontrib><creatorcontrib>Semenovich, D.</creatorcontrib><creatorcontrib>Sowmya, A.</creatorcontrib><title>Cell tracking and mitosis detection using splitting flow networks in phase-contrast imaging</title><title>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>EMBC</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>Cell tracking is a crucial component of many biomedical image analysis applications. Many available cell tracking systems assume high precision of the cell detection module. Therefore low performance in cell detection can heavily affect the tracking results. Unfortunately cell segmentation modules often have significant errors, especially in the case of phase-contrast imaging. In this paper we propose a tracking method that does not rely on perfect cell segmentation and can deal with uncertainties by exploiting temporal information and aggregating the results of many frames. Our tracking algorithm is fully automated and can handle common challenges of tracking such as cells entering/exiting the screen and mitosis events. To handle the latter, we modify the standard flow network and introduce the concept of a splitting node into it. Experiment results show that adding temporal information from the video microscopy improves the cell/mitosis detection and results in a better tracking system.</description><subject>Algorithms</subject><subject>Biomedical imaging</subject><subject>Computational modeling</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Linear programming</subject><subject>Logistics</subject><subject>Microscopy</subject><subject>Mitosis</subject><subject>ROC Curve</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>1424441196</isbn><isbn>9781424441198</isbn><isbn>9781457717871</isbn><isbn>1457717875</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kF9LwzAUxeM_3Jz7ACJIvkBnb5Im6aOW-QcmvigIPow0vZ1xXVuajOG3t2XT-3Iv_A6Hew4hVxDPAOL0dv5yn81YDGwmuVCQ8iMyTZUGkSgFSis4JmNIEh0JCckJuQDBhBAAqTztQZyKSGr1MSJT77_jfjRoHotzMmKcSwVMj8lnhlVFQ2fs2tUrauqCblxovPO0wIA2uKamWz8w31YuhOEqq2ZHawy7plt76mrafhmPkW3q3sgH6jZm1esuyVlpKo_Tw56Q94f5W_YULV4fn7O7ReQ4FyHSqtAcC22NSCXwkqskh3TIKy0TLIdCYpmgNoqVNi8TaRXaAq3tqZCG8wm52fu223yDxbLt-ge6n-Vfyl5wvRc4RPzHh075L5Z0ZR0</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Massoudi, A.</creator><creator>Semenovich, D.</creator><creator>Sowmya, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20120101</creationdate><title>Cell tracking and mitosis detection using splitting flow networks in phase-contrast imaging</title><author>Massoudi, A. ; Semenovich, D. ; Sowmya, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i334t-87d83ed8ca49613f375b1947196c242b1d6ef5e8a72fcbf56c7ecdeccc2446a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Biomedical imaging</topic><topic>Computational modeling</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Linear programming</topic><topic>Logistics</topic><topic>Microscopy</topic><topic>Mitosis</topic><topic>ROC Curve</topic><toplevel>online_resources</toplevel><creatorcontrib>Massoudi, A.</creatorcontrib><creatorcontrib>Semenovich, D.</creatorcontrib><creatorcontrib>Sowmya, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Explore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Massoudi, A.</au><au>Semenovich, D.</au><au>Sowmya, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell tracking and mitosis detection using splitting flow networks in phase-contrast imaging</atitle><jtitle>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle><stitle>EMBC</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><spage>5310</spage><epage>5313</epage><pages>5310-5313</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>1424441196</isbn><isbn>9781424441198</isbn><eisbn>9781457717871</eisbn><eisbn>1457717875</eisbn><abstract>Cell tracking is a crucial component of many biomedical image analysis applications. Many available cell tracking systems assume high precision of the cell detection module. Therefore low performance in cell detection can heavily affect the tracking results. Unfortunately cell segmentation modules often have significant errors, especially in the case of phase-contrast imaging. In this paper we propose a tracking method that does not rely on perfect cell segmentation and can deal with uncertainties by exploiting temporal information and aggregating the results of many frames. Our tracking algorithm is fully automated and can handle common challenges of tracking such as cells entering/exiting the screen and mitosis events. To handle the latter, we modify the standard flow network and introduce the concept of a splitting node into it. Experiment results show that adding temporal information from the video microscopy improves the cell/mitosis detection and results in a better tracking system.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23367128</pmid><doi>10.1109/EMBC.2012.6347193</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1094-687X |
ispartof | 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012-01, Vol.2012, p.5310-5313 |
issn | 1094-687X 1557-170X 1558-4615 |
language | eng |
recordid | cdi_ieee_primary_6347193 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithms Biomedical imaging Computational modeling Image edge detection Image segmentation Linear programming Logistics Microscopy Mitosis ROC Curve |
title | Cell tracking and mitosis detection using splitting flow networks in phase-contrast imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A21%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%20tracking%20and%20mitosis%20detection%20using%20splitting%20flow%20networks%20in%20phase-contrast%20imaging&rft.jtitle=2012%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Massoudi,%20A.&rft.date=2012-01-01&rft.volume=2012&rft.spage=5310&rft.epage=5313&rft.pages=5310-5313&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=1424441196&rft.isbn_list=9781424441198&rft_id=info:doi/10.1109/EMBC.2012.6347193&rft_dat=%3Cpubmed_6IE%3E23367128%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457717871&rft.eisbn_list=1457717875&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23367128&rft_ieee_id=6347193&rfr_iscdi=true |