Cell tracking and mitosis detection using splitting flow networks in phase-contrast imaging

Cell tracking is a crucial component of many biomedical image analysis applications. Many available cell tracking systems assume high precision of the cell detection module. Therefore low performance in cell detection can heavily affect the tracking results. Unfortunately cell segmentation modules o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2012-01, Vol.2012, p.5310-5313
Hauptverfasser: Massoudi, A., Semenovich, D., Sowmya, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5313
container_issue
container_start_page 5310
container_title 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
container_volume 2012
creator Massoudi, A.
Semenovich, D.
Sowmya, A.
description Cell tracking is a crucial component of many biomedical image analysis applications. Many available cell tracking systems assume high precision of the cell detection module. Therefore low performance in cell detection can heavily affect the tracking results. Unfortunately cell segmentation modules often have significant errors, especially in the case of phase-contrast imaging. In this paper we propose a tracking method that does not rely on perfect cell segmentation and can deal with uncertainties by exploiting temporal information and aggregating the results of many frames. Our tracking algorithm is fully automated and can handle common challenges of tracking such as cells entering/exiting the screen and mitosis events. To handle the latter, we modify the standard flow network and introduce the concept of a splitting node into it. Experiment results show that adding temporal information from the video microscopy improves the cell/mitosis detection and results in a better tracking system.
doi_str_mv 10.1109/EMBC.2012.6347193
format Article
fullrecord <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6347193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6347193</ieee_id><sourcerecordid>23367128</sourcerecordid><originalsourceid>FETCH-LOGICAL-i334t-87d83ed8ca49613f375b1947196c242b1d6ef5e8a72fcbf56c7ecdeccc2446a33</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxeM_3Jz7ACJIvkBnb5Im6aOW-QcmvigIPow0vZ1xXVuajOG3t2XT-3Iv_A6Hew4hVxDPAOL0dv5yn81YDGwmuVCQ8iMyTZUGkSgFSis4JmNIEh0JCckJuQDBhBAAqTztQZyKSGr1MSJT77_jfjRoHotzMmKcSwVMj8lnhlVFQ2fs2tUrauqCblxovPO0wIA2uKamWz8w31YuhOEqq2ZHawy7plt76mrafhmPkW3q3sgH6jZm1esuyVlpKo_Tw56Q94f5W_YULV4fn7O7ReQ4FyHSqtAcC22NSCXwkqskh3TIKy0TLIdCYpmgNoqVNi8TaRXaAq3tqZCG8wm52fu223yDxbLt-ge6n-Vfyl5wvRc4RPzHh075L5Z0ZR0</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cell tracking and mitosis detection using splitting flow networks in phase-contrast imaging</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Massoudi, A. ; Semenovich, D. ; Sowmya, A.</creator><creatorcontrib>Massoudi, A. ; Semenovich, D. ; Sowmya, A.</creatorcontrib><description>Cell tracking is a crucial component of many biomedical image analysis applications. Many available cell tracking systems assume high precision of the cell detection module. Therefore low performance in cell detection can heavily affect the tracking results. Unfortunately cell segmentation modules often have significant errors, especially in the case of phase-contrast imaging. In this paper we propose a tracking method that does not rely on perfect cell segmentation and can deal with uncertainties by exploiting temporal information and aggregating the results of many frames. Our tracking algorithm is fully automated and can handle common challenges of tracking such as cells entering/exiting the screen and mitosis events. To handle the latter, we modify the standard flow network and introduce the concept of a splitting node into it. Experiment results show that adding temporal information from the video microscopy improves the cell/mitosis detection and results in a better tracking system.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 1424441196</identifier><identifier>ISBN: 9781424441198</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 9781457717871</identifier><identifier>EISBN: 1457717875</identifier><identifier>DOI: 10.1109/EMBC.2012.6347193</identifier><identifier>PMID: 23367128</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Biomedical imaging ; Computational modeling ; Image edge detection ; Image segmentation ; Linear programming ; Logistics ; Microscopy ; Mitosis ; ROC Curve</subject><ispartof>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012-01, Vol.2012, p.5310-5313</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6347193$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6347193$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23367128$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Massoudi, A.</creatorcontrib><creatorcontrib>Semenovich, D.</creatorcontrib><creatorcontrib>Sowmya, A.</creatorcontrib><title>Cell tracking and mitosis detection using splitting flow networks in phase-contrast imaging</title><title>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>EMBC</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>Cell tracking is a crucial component of many biomedical image analysis applications. Many available cell tracking systems assume high precision of the cell detection module. Therefore low performance in cell detection can heavily affect the tracking results. Unfortunately cell segmentation modules often have significant errors, especially in the case of phase-contrast imaging. In this paper we propose a tracking method that does not rely on perfect cell segmentation and can deal with uncertainties by exploiting temporal information and aggregating the results of many frames. Our tracking algorithm is fully automated and can handle common challenges of tracking such as cells entering/exiting the screen and mitosis events. To handle the latter, we modify the standard flow network and introduce the concept of a splitting node into it. Experiment results show that adding temporal information from the video microscopy improves the cell/mitosis detection and results in a better tracking system.</description><subject>Algorithms</subject><subject>Biomedical imaging</subject><subject>Computational modeling</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Linear programming</subject><subject>Logistics</subject><subject>Microscopy</subject><subject>Mitosis</subject><subject>ROC Curve</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>1424441196</isbn><isbn>9781424441198</isbn><isbn>9781457717871</isbn><isbn>1457717875</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kF9LwzAUxeM_3Jz7ACJIvkBnb5Im6aOW-QcmvigIPow0vZ1xXVuajOG3t2XT-3Iv_A6Hew4hVxDPAOL0dv5yn81YDGwmuVCQ8iMyTZUGkSgFSis4JmNIEh0JCckJuQDBhBAAqTztQZyKSGr1MSJT77_jfjRoHotzMmKcSwVMj8lnhlVFQ2fs2tUrauqCblxovPO0wIA2uKamWz8w31YuhOEqq2ZHawy7plt76mrafhmPkW3q3sgH6jZm1esuyVlpKo_Tw56Q94f5W_YULV4fn7O7ReQ4FyHSqtAcC22NSCXwkqskh3TIKy0TLIdCYpmgNoqVNi8TaRXaAq3tqZCG8wm52fu223yDxbLt-ge6n-Vfyl5wvRc4RPzHh075L5Z0ZR0</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Massoudi, A.</creator><creator>Semenovich, D.</creator><creator>Sowmya, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20120101</creationdate><title>Cell tracking and mitosis detection using splitting flow networks in phase-contrast imaging</title><author>Massoudi, A. ; Semenovich, D. ; Sowmya, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i334t-87d83ed8ca49613f375b1947196c242b1d6ef5e8a72fcbf56c7ecdeccc2446a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Biomedical imaging</topic><topic>Computational modeling</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Linear programming</topic><topic>Logistics</topic><topic>Microscopy</topic><topic>Mitosis</topic><topic>ROC Curve</topic><toplevel>online_resources</toplevel><creatorcontrib>Massoudi, A.</creatorcontrib><creatorcontrib>Semenovich, D.</creatorcontrib><creatorcontrib>Sowmya, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Explore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Massoudi, A.</au><au>Semenovich, D.</au><au>Sowmya, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell tracking and mitosis detection using splitting flow networks in phase-contrast imaging</atitle><jtitle>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle><stitle>EMBC</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><spage>5310</spage><epage>5313</epage><pages>5310-5313</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>1424441196</isbn><isbn>9781424441198</isbn><eisbn>9781457717871</eisbn><eisbn>1457717875</eisbn><abstract>Cell tracking is a crucial component of many biomedical image analysis applications. Many available cell tracking systems assume high precision of the cell detection module. Therefore low performance in cell detection can heavily affect the tracking results. Unfortunately cell segmentation modules often have significant errors, especially in the case of phase-contrast imaging. In this paper we propose a tracking method that does not rely on perfect cell segmentation and can deal with uncertainties by exploiting temporal information and aggregating the results of many frames. Our tracking algorithm is fully automated and can handle common challenges of tracking such as cells entering/exiting the screen and mitosis events. To handle the latter, we modify the standard flow network and introduce the concept of a splitting node into it. Experiment results show that adding temporal information from the video microscopy improves the cell/mitosis detection and results in a better tracking system.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23367128</pmid><doi>10.1109/EMBC.2012.6347193</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012-01, Vol.2012, p.5310-5313
issn 1094-687X
1557-170X
1558-4615
language eng
recordid cdi_ieee_primary_6347193
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithms
Biomedical imaging
Computational modeling
Image edge detection
Image segmentation
Linear programming
Logistics
Microscopy
Mitosis
ROC Curve
title Cell tracking and mitosis detection using splitting flow networks in phase-contrast imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A21%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%20tracking%20and%20mitosis%20detection%20using%20splitting%20flow%20networks%20in%20phase-contrast%20imaging&rft.jtitle=2012%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Massoudi,%20A.&rft.date=2012-01-01&rft.volume=2012&rft.spage=5310&rft.epage=5313&rft.pages=5310-5313&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=1424441196&rft.isbn_list=9781424441198&rft_id=info:doi/10.1109/EMBC.2012.6347193&rft_dat=%3Cpubmed_6IE%3E23367128%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457717871&rft.eisbn_list=1457717875&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23367128&rft_ieee_id=6347193&rfr_iscdi=true