Scalable, high-performance 3D imaging software platform: System architecture and application to virtual colonoscopy
One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that...
Gespeichert in:
Veröffentlicht in: | 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2012-01, Vol.2012, p.3994-3997 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3997 |
---|---|
container_issue | |
container_start_page | 3994 |
container_title | 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society |
container_volume | 2012 |
creator | Yoshida, H. Yin Wu Wenli Cai Brett, B. |
description | One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. In this work, we have developed a software platform that is designed to support high-performance 3D medical image processing for a wide range of applications using increasingly available and affordable commodity computing systems: multi-core, clusters, and cloud computing systems. To achieve scalable, high-performance computing, our platform (1) employs size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D image processing algorithms; (2) supports task scheduling for efficient load distribution and balancing; and (3) consists of a layered parallel software libraries that allow a wide range of medical applications to share the same functionalities. We evaluated the performance of our platform by applying it to an electronic cleansing system in virtual colonoscopy, with initial experimental results showing a 10 times performance improvement on an 8-core workstation over the original sequential implementation of the system. |
doi_str_mv | 10.1109/EMBC.2012.6346842 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6346842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6346842</ieee_id><sourcerecordid>23366803</sourcerecordid><originalsourceid>FETCH-LOGICAL-i432t-f21ba6bc22677f4771bddfb3dfac0cba6d453309848c105c64bcb1f8dbe84adf3</originalsourceid><addsrcrecordid>eNpVkd1u1DAQhc2faCn7AAgJ-QHI4rEntsMFEmzLj1TERUHiLho79q5RNo4Sb9G-fYNaKpibufjOHOmcYewFiDWAaN5cfP2wWUsBcq0VaovyAVs1xgLWxoCxBh6yU6hrW6GG-hF7BigREaDRjxcgGqy0NT9P2Gqef4llLFgl8Ck7kUppbYU6ZfOVp55cH17zXdruqjFMMU97Gnzg6pynPW3TsOVzjuU3TYGPPZU_grf86jiXsOc0-V0qwZfDQmnoOI1jnzyVlAdeMr9OUzlQz33u85Bnn8fjc_YkUj-H1d0-Yz8-XnzffK4uv336snl_WSVUslRRgiPtvJTamIhLZNd10akukhd-QR3WSonGovUgaq_ReQfRdi5YpC6qM_bu1nc8uH3ofBjKRH07Tkuq6dhmSu3_ZEi7dpuvW6URaiMWg1f_Gtxf_q1vEby8FaQQwj2-e5a6AfQIhcQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Scalable, high-performance 3D imaging software platform: System architecture and application to virtual colonoscopy</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yoshida, H. ; Yin Wu ; Wenli Cai ; Brett, B.</creator><creatorcontrib>Yoshida, H. ; Yin Wu ; Wenli Cai ; Brett, B.</creatorcontrib><description>One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. In this work, we have developed a software platform that is designed to support high-performance 3D medical image processing for a wide range of applications using increasingly available and affordable commodity computing systems: multi-core, clusters, and cloud computing systems. To achieve scalable, high-performance computing, our platform (1) employs size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D image processing algorithms; (2) supports task scheduling for efficient load distribution and balancing; and (3) consists of a layered parallel software libraries that allow a wide range of medical applications to share the same functionalities. We evaluated the performance of our platform by applying it to an electronic cleansing system in virtual colonoscopy, with initial experimental results showing a 10 times performance improvement on an 8-core workstation over the original sequential implementation of the system.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 1424441196</identifier><identifier>ISBN: 9781424441198</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 9781457717871</identifier><identifier>EISBN: 1457717875</identifier><identifier>DOI: 10.1109/EMBC.2012.6346842</identifier><identifier>PMID: 23366803</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithm design and analysis ; Colon ; Colon - pathology ; Colonography, Computed Tomographic - methods ; Colonography, Computed Tomographic - standards ; Humans ; Imaging ; Imaging, Three-Dimensional - methods ; Level set ; Libraries ; Parallel processing ; Software ; Software - standards ; Time Factors</subject><ispartof>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012-01, Vol.2012, p.3994-3997</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6346842$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,885,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6346842$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23366803$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoshida, H.</creatorcontrib><creatorcontrib>Yin Wu</creatorcontrib><creatorcontrib>Wenli Cai</creatorcontrib><creatorcontrib>Brett, B.</creatorcontrib><title>Scalable, high-performance 3D imaging software platform: System architecture and application to virtual colonoscopy</title><title>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>EMBC</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. In this work, we have developed a software platform that is designed to support high-performance 3D medical image processing for a wide range of applications using increasingly available and affordable commodity computing systems: multi-core, clusters, and cloud computing systems. To achieve scalable, high-performance computing, our platform (1) employs size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D image processing algorithms; (2) supports task scheduling for efficient load distribution and balancing; and (3) consists of a layered parallel software libraries that allow a wide range of medical applications to share the same functionalities. We evaluated the performance of our platform by applying it to an electronic cleansing system in virtual colonoscopy, with initial experimental results showing a 10 times performance improvement on an 8-core workstation over the original sequential implementation of the system.</description><subject>Algorithm design and analysis</subject><subject>Colon</subject><subject>Colon - pathology</subject><subject>Colonography, Computed Tomographic - methods</subject><subject>Colonography, Computed Tomographic - standards</subject><subject>Humans</subject><subject>Imaging</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Level set</subject><subject>Libraries</subject><subject>Parallel processing</subject><subject>Software</subject><subject>Software - standards</subject><subject>Time Factors</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>1424441196</isbn><isbn>9781424441198</isbn><isbn>9781457717871</isbn><isbn>1457717875</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpVkd1u1DAQhc2faCn7AAgJ-QHI4rEntsMFEmzLj1TERUHiLho79q5RNo4Sb9G-fYNaKpibufjOHOmcYewFiDWAaN5cfP2wWUsBcq0VaovyAVs1xgLWxoCxBh6yU6hrW6GG-hF7BigREaDRjxcgGqy0NT9P2Gqef4llLFgl8Ck7kUppbYU6ZfOVp55cH17zXdruqjFMMU97Gnzg6pynPW3TsOVzjuU3TYGPPZU_grf86jiXsOc0-V0qwZfDQmnoOI1jnzyVlAdeMr9OUzlQz33u85Bnn8fjc_YkUj-H1d0-Yz8-XnzffK4uv336snl_WSVUslRRgiPtvJTamIhLZNd10akukhd-QR3WSonGovUgaq_ReQfRdi5YpC6qM_bu1nc8uH3ofBjKRH07Tkuq6dhmSu3_ZEi7dpuvW6URaiMWg1f_Gtxf_q1vEby8FaQQwj2-e5a6AfQIhcQ</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Yoshida, H.</creator><creator>Yin Wu</creator><creator>Wenli Cai</creator><creator>Brett, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>5PM</scope></search><sort><creationdate>20120101</creationdate><title>Scalable, high-performance 3D imaging software platform: System architecture and application to virtual colonoscopy</title><author>Yoshida, H. ; Yin Wu ; Wenli Cai ; Brett, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i432t-f21ba6bc22677f4771bddfb3dfac0cba6d453309848c105c64bcb1f8dbe84adf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithm design and analysis</topic><topic>Colon</topic><topic>Colon - pathology</topic><topic>Colonography, Computed Tomographic - methods</topic><topic>Colonography, Computed Tomographic - standards</topic><topic>Humans</topic><topic>Imaging</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Level set</topic><topic>Libraries</topic><topic>Parallel processing</topic><topic>Software</topic><topic>Software - standards</topic><topic>Time Factors</topic><toplevel>online_resources</toplevel><creatorcontrib>Yoshida, H.</creatorcontrib><creatorcontrib>Yin Wu</creatorcontrib><creatorcontrib>Wenli Cai</creatorcontrib><creatorcontrib>Brett, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yoshida, H.</au><au>Yin Wu</au><au>Wenli Cai</au><au>Brett, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable, high-performance 3D imaging software platform: System architecture and application to virtual colonoscopy</atitle><jtitle>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle><stitle>EMBC</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><spage>3994</spage><epage>3997</epage><pages>3994-3997</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>1424441196</isbn><isbn>9781424441198</isbn><eisbn>9781457717871</eisbn><eisbn>1457717875</eisbn><abstract>One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. In this work, we have developed a software platform that is designed to support high-performance 3D medical image processing for a wide range of applications using increasingly available and affordable commodity computing systems: multi-core, clusters, and cloud computing systems. To achieve scalable, high-performance computing, our platform (1) employs size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D image processing algorithms; (2) supports task scheduling for efficient load distribution and balancing; and (3) consists of a layered parallel software libraries that allow a wide range of medical applications to share the same functionalities. We evaluated the performance of our platform by applying it to an electronic cleansing system in virtual colonoscopy, with initial experimental results showing a 10 times performance improvement on an 8-core workstation over the original sequential implementation of the system.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23366803</pmid><doi>10.1109/EMBC.2012.6346842</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1094-687X |
ispartof | 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012-01, Vol.2012, p.3994-3997 |
issn | 1094-687X 1557-170X 1558-4615 |
language | eng |
recordid | cdi_ieee_primary_6346842 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Colon Colon - pathology Colonography, Computed Tomographic - methods Colonography, Computed Tomographic - standards Humans Imaging Imaging, Three-Dimensional - methods Level set Libraries Parallel processing Software Software - standards Time Factors |
title | Scalable, high-performance 3D imaging software platform: System architecture and application to virtual colonoscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A37%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable,%20high-performance%203D%20imaging%20software%20platform:%20System%20architecture%20and%20application%20to%20virtual%20colonoscopy&rft.jtitle=2012%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Yoshida,%20H.&rft.date=2012-01-01&rft.volume=2012&rft.spage=3994&rft.epage=3997&rft.pages=3994-3997&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=1424441196&rft.isbn_list=9781424441198&rft_id=info:doi/10.1109/EMBC.2012.6346842&rft_dat=%3Cpubmed_6IE%3E23366803%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457717871&rft.eisbn_list=1457717875&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23366803&rft_ieee_id=6346842&rfr_iscdi=true |