Gait episode identification based on wavelet feature clustering of spectrogram images

Measurement of gait parameters can provide important information about a person's health and safety. Automatic analysis of gait using kinematic sensors is a newly emerging area of research. We propose a new approach to detect gait episodes using Neural Network and and clustering of wavelet-deco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yuwono, M., Su, S. W., Moulton, B. D., Nguyen, H. T.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2952
container_issue
container_start_page 2949
container_title
container_volume 2012
creator Yuwono, M.
Su, S. W.
Moulton, B. D.
Nguyen, H. T.
description Measurement of gait parameters can provide important information about a person's health and safety. Automatic analysis of gait using kinematic sensors is a newly emerging area of research. We propose a new approach to detect gait episodes using Neural Network and and clustering of wavelet-decomposed spectrogram images. Signals from a chest-worn inertial measurement unit (IMU) is processed using Explicit Complementary Filter (ECF) to estimate and track torso angle. Using the feature obtained from wavelet decomposition of spectrogram images, we use an Augmented Radial Basis Neural Network (ARBF) to classify walking episodes. Cluster centroids of ARBF are optimized using Rapid Cluster Estimation (RCE). A pilot study of 11 participants suggests that our approach is able to distinguish between walk and non-walk activities with up to 85.71% sensitivity and 91.34% specificity.
doi_str_mv 10.1109/EMBC.2012.6346582
format Conference Proceeding
fullrecord <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6346582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6346582</ieee_id><sourcerecordid>23366543</sourcerecordid><originalsourceid>FETCH-LOGICAL-i301t-a1f8caf7e1a29a05dd94851d701c91720cf44ca6b70af5d3e114d4d826688c173</originalsourceid><addsrcrecordid>eNo9kN1KAzEQheMfttY-gAiSF9iayf9eaqlVqHhjwbuSJpMSabtlkyq-vQutnps5cD5mmEPIDbARAKvvJ6-P4xFnwEdaSK0sPyHD2liQyhgw1sAp6YNStpIa1Bm5AsmllAC1Pu8CVstKW_PRI8OcP1knC1YweUl6XAitlRR9Mp-6VCjuUm4C0hRwW1JM3pXUbOnSZQy0M9_uC9dYaERX9i1Sv97ngm3armgTad6hL22zat2Gpo1bYb4mF9GtMw6Pc0DmT5P38XM1e5u-jB9mVRIMSuUgWu-iQXC8dkyFUEurIBgGvgbDmY9SeqeXhrmogkAAGWSwXGtrPRgxIHeHvbv9coNhsWu7--3P4u-_Drg9AAkR_-Njm-IXqYNiDA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Gait episode identification based on wavelet feature clustering of spectrogram images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yuwono, M. ; Su, S. W. ; Moulton, B. D. ; Nguyen, H. T.</creator><creatorcontrib>Yuwono, M. ; Su, S. W. ; Moulton, B. D. ; Nguyen, H. T.</creatorcontrib><description>Measurement of gait parameters can provide important information about a person's health and safety. Automatic analysis of gait using kinematic sensors is a newly emerging area of research. We propose a new approach to detect gait episodes using Neural Network and and clustering of wavelet-decomposed spectrogram images. Signals from a chest-worn inertial measurement unit (IMU) is processed using Explicit Complementary Filter (ECF) to estimate and track torso angle. Using the feature obtained from wavelet decomposition of spectrogram images, we use an Augmented Radial Basis Neural Network (ARBF) to classify walking episodes. Cluster centroids of ARBF are optimized using Rapid Cluster Estimation (RCE). A pilot study of 11 participants suggests that our approach is able to distinguish between walk and non-walk activities with up to 85.71% sensitivity and 91.34% specificity.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 1424441196</identifier><identifier>ISBN: 9781424441198</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 9781457717871</identifier><identifier>EISBN: 1457717875</identifier><identifier>DOI: 10.1109/EMBC.2012.6346582</identifier><identifier>PMID: 23366543</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Discrete wavelet transforms ; Gait - physiology ; Humans ; Image resolution ; MATLAB ; Neural Networks (Computer) ; Noise measurement ; Rotation measurement ; Spectrogram</subject><ispartof>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, Vol.2012, p.2949-2952</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6346582$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6346582$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23366543$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuwono, M.</creatorcontrib><creatorcontrib>Su, S. W.</creatorcontrib><creatorcontrib>Moulton, B. D.</creatorcontrib><creatorcontrib>Nguyen, H. T.</creatorcontrib><title>Gait episode identification based on wavelet feature clustering of spectrogram images</title><title>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>EMBC</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>Measurement of gait parameters can provide important information about a person's health and safety. Automatic analysis of gait using kinematic sensors is a newly emerging area of research. We propose a new approach to detect gait episodes using Neural Network and and clustering of wavelet-decomposed spectrogram images. Signals from a chest-worn inertial measurement unit (IMU) is processed using Explicit Complementary Filter (ECF) to estimate and track torso angle. Using the feature obtained from wavelet decomposition of spectrogram images, we use an Augmented Radial Basis Neural Network (ARBF) to classify walking episodes. Cluster centroids of ARBF are optimized using Rapid Cluster Estimation (RCE). A pilot study of 11 participants suggests that our approach is able to distinguish between walk and non-walk activities with up to 85.71% sensitivity and 91.34% specificity.</description><subject>Algorithms</subject><subject>Discrete wavelet transforms</subject><subject>Gait - physiology</subject><subject>Humans</subject><subject>Image resolution</subject><subject>MATLAB</subject><subject>Neural Networks (Computer)</subject><subject>Noise measurement</subject><subject>Rotation measurement</subject><subject>Spectrogram</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>1424441196</isbn><isbn>9781424441198</isbn><isbn>9781457717871</isbn><isbn>1457717875</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kN1KAzEQheMfttY-gAiSF9iayf9eaqlVqHhjwbuSJpMSabtlkyq-vQutnps5cD5mmEPIDbARAKvvJ6-P4xFnwEdaSK0sPyHD2liQyhgw1sAp6YNStpIa1Bm5AsmllAC1Pu8CVstKW_PRI8OcP1knC1YweUl6XAitlRR9Mp-6VCjuUm4C0hRwW1JM3pXUbOnSZQy0M9_uC9dYaERX9i1Sv97ngm3armgTad6hL22zat2Gpo1bYb4mF9GtMw6Pc0DmT5P38XM1e5u-jB9mVRIMSuUgWu-iQXC8dkyFUEurIBgGvgbDmY9SeqeXhrmogkAAGWSwXGtrPRgxIHeHvbv9coNhsWu7--3P4u-_Drg9AAkR_-Njm-IXqYNiDA</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Yuwono, M.</creator><creator>Su, S. W.</creator><creator>Moulton, B. D.</creator><creator>Nguyen, H. T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20120101</creationdate><title>Gait episode identification based on wavelet feature clustering of spectrogram images</title><author>Yuwono, M. ; Su, S. W. ; Moulton, B. D. ; Nguyen, H. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i301t-a1f8caf7e1a29a05dd94851d701c91720cf44ca6b70af5d3e114d4d826688c173</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Discrete wavelet transforms</topic><topic>Gait - physiology</topic><topic>Humans</topic><topic>Image resolution</topic><topic>MATLAB</topic><topic>Neural Networks (Computer)</topic><topic>Noise measurement</topic><topic>Rotation measurement</topic><topic>Spectrogram</topic><toplevel>online_resources</toplevel><creatorcontrib>Yuwono, M.</creatorcontrib><creatorcontrib>Su, S. W.</creatorcontrib><creatorcontrib>Moulton, B. D.</creatorcontrib><creatorcontrib>Nguyen, H. T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yuwono, M.</au><au>Su, S. W.</au><au>Moulton, B. D.</au><au>Nguyen, H. T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Gait episode identification based on wavelet feature clustering of spectrogram images</atitle><btitle>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>EMBC</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><spage>2949</spage><epage>2952</epage><pages>2949-2952</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>1424441196</isbn><isbn>9781424441198</isbn><eisbn>9781457717871</eisbn><eisbn>1457717875</eisbn><abstract>Measurement of gait parameters can provide important information about a person's health and safety. Automatic analysis of gait using kinematic sensors is a newly emerging area of research. We propose a new approach to detect gait episodes using Neural Network and and clustering of wavelet-decomposed spectrogram images. Signals from a chest-worn inertial measurement unit (IMU) is processed using Explicit Complementary Filter (ECF) to estimate and track torso angle. Using the feature obtained from wavelet decomposition of spectrogram images, we use an Augmented Radial Basis Neural Network (ARBF) to classify walking episodes. Cluster centroids of ARBF are optimized using Rapid Cluster Estimation (RCE). A pilot study of 11 participants suggests that our approach is able to distinguish between walk and non-walk activities with up to 85.71% sensitivity and 91.34% specificity.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23366543</pmid><doi>10.1109/EMBC.2012.6346582</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, Vol.2012, p.2949-2952
issn 1094-687X
1557-170X
1558-4615
language eng
recordid cdi_ieee_primary_6346582
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithms
Discrete wavelet transforms
Gait - physiology
Humans
Image resolution
MATLAB
Neural Networks (Computer)
Noise measurement
Rotation measurement
Spectrogram
title Gait episode identification based on wavelet feature clustering of spectrogram images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A26%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Gait%20episode%20identification%20based%20on%20wavelet%20feature%20clustering%20of%20spectrogram%20images&rft.btitle=2012%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Yuwono,%20M.&rft.date=2012-01-01&rft.volume=2012&rft.spage=2949&rft.epage=2952&rft.pages=2949-2952&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=1424441196&rft.isbn_list=9781424441198&rft_id=info:doi/10.1109/EMBC.2012.6346582&rft_dat=%3Cpubmed_6IE%3E23366543%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457717871&rft.eisbn_list=1457717875&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23366543&rft_ieee_id=6346582&rfr_iscdi=true