Classification of individuals based on Sparse Representation of brain cognitive patterns: A functional MRI study
Many neurological disorders can change patterns of brain activity observed in functional imaging studies. These functional differences may be useful for classification of individuals into diagnostic categories. However, due to the high dimensionality of the input feature space and small set of subje...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2691 |
---|---|
container_issue | |
container_start_page | 2688 |
container_title | |
container_volume | 2012 |
creator | Ramezani, M. Abolmaesumi, P. Marble, K. MacDonald, H. Johnsrude, I. |
description | Many neurological disorders can change patterns of brain activity observed in functional imaging studies. These functional differences may be useful for classification of individuals into diagnostic categories. However, due to the high dimensionality of the input feature space and small set of subjects that are usually available, classification based on fMRI data is not trivial. Here, we evaluate the use of a Sparse Representation Analysis method within a Fisher Linear Discriminant (FLD) classification method, taking functional patterns characteristic of different cognitive tasks as the data input. As a test dataset, with a clear `gold-standard' classification, we attempt to classify individuals as young, or older, based only on functional activation patterns in a speech listening task. Thirty two young (age: 19-26) and older (age: 57-73) adults (16 each) were scanned while listening to noise and to sentences degraded with noise, half of which contained meaningful context that could be used to enhance intelligibility. Different functional contrast images were used within K-SVD to generate basis activation sources and their corresponding sparse modulation profiles. Sparse modulation profiles were used in a FLD framework to classify individuals into the young and older categories. The results demonstrate the feasibility of the general approach, and confirm the potential applicability of the proposed method for real-world diagnostic problems. |
doi_str_mv | 10.1109/EMBC.2012.6346518 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6346518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6346518</ieee_id><sourcerecordid>23366479</sourcerecordid><originalsourceid>FETCH-LOGICAL-i301t-ccf4a329d27fb97813ee7a902592692e3f11470ea47e35f8c6d03005b9ccc9233</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhuMXbs79ABEkf6AzJ0mTxrtZpg42hKng3UjTU4lsXWnawf69HZs7NwfO-_DCcwi5AzYCYOZxMn9OR5wBHykhVQzJGRkanYCMtQadaDgnfYjjJJIK4gtyA5JLKQGMuuwCZmSkEv3dI8MQflk3CSSCyWvS40IoJbXpkypd2RB84Z1t_Kakm4L6Mvdbn7d2FWhmA-a0u39Utg5IF1jVGLBsTnRWW19St_kpfeO3SCvbNFiX4YmOadGWbs_ZFZ0vpjQ0bb67JVdF14zD4x6Qr5fJZ_oWzd5fp-l4FnnBoImcK6QV3ORcF9neWSBqaxiPDVeGoygApGZopUYRF4lTOROMxZlxzpnOb0AeDr1Vm60xX1a1X9t6t_xX74D7A-AR8RQfHy3-ANE0a10</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Classification of individuals based on Sparse Representation of brain cognitive patterns: A functional MRI study</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ramezani, M. ; Abolmaesumi, P. ; Marble, K. ; MacDonald, H. ; Johnsrude, I.</creator><creatorcontrib>Ramezani, M. ; Abolmaesumi, P. ; Marble, K. ; MacDonald, H. ; Johnsrude, I.</creatorcontrib><description>Many neurological disorders can change patterns of brain activity observed in functional imaging studies. These functional differences may be useful for classification of individuals into diagnostic categories. However, due to the high dimensionality of the input feature space and small set of subjects that are usually available, classification based on fMRI data is not trivial. Here, we evaluate the use of a Sparse Representation Analysis method within a Fisher Linear Discriminant (FLD) classification method, taking functional patterns characteristic of different cognitive tasks as the data input. As a test dataset, with a clear `gold-standard' classification, we attempt to classify individuals as young, or older, based only on functional activation patterns in a speech listening task. Thirty two young (age: 19-26) and older (age: 57-73) adults (16 each) were scanned while listening to noise and to sentences degraded with noise, half of which contained meaningful context that could be used to enhance intelligibility. Different functional contrast images were used within K-SVD to generate basis activation sources and their corresponding sparse modulation profiles. Sparse modulation profiles were used in a FLD framework to classify individuals into the young and older categories. The results demonstrate the feasibility of the general approach, and confirm the potential applicability of the proposed method for real-world diagnostic problems.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 1424441196</identifier><identifier>ISBN: 9781424441198</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 9781457717871</identifier><identifier>EISBN: 1457717875</identifier><identifier>DOI: 10.1109/EMBC.2012.6346518</identifier><identifier>PMID: 23366479</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Adult ; Aged ; Algorithms ; Brain - physiology ; Context ; Dictionaries ; Female ; Humans ; Magnetic Resonance Imaging - methods ; Male ; Middle Aged ; Noise ; Reliability ; Speech ; Training ; Young Adult</subject><ispartof>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, Vol.2012, p.2688-2691</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6346518$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6346518$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23366479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramezani, M.</creatorcontrib><creatorcontrib>Abolmaesumi, P.</creatorcontrib><creatorcontrib>Marble, K.</creatorcontrib><creatorcontrib>MacDonald, H.</creatorcontrib><creatorcontrib>Johnsrude, I.</creatorcontrib><title>Classification of individuals based on Sparse Representation of brain cognitive patterns: A functional MRI study</title><title>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>EMBC</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>Many neurological disorders can change patterns of brain activity observed in functional imaging studies. These functional differences may be useful for classification of individuals into diagnostic categories. However, due to the high dimensionality of the input feature space and small set of subjects that are usually available, classification based on fMRI data is not trivial. Here, we evaluate the use of a Sparse Representation Analysis method within a Fisher Linear Discriminant (FLD) classification method, taking functional patterns characteristic of different cognitive tasks as the data input. As a test dataset, with a clear `gold-standard' classification, we attempt to classify individuals as young, or older, based only on functional activation patterns in a speech listening task. Thirty two young (age: 19-26) and older (age: 57-73) adults (16 each) were scanned while listening to noise and to sentences degraded with noise, half of which contained meaningful context that could be used to enhance intelligibility. Different functional contrast images were used within K-SVD to generate basis activation sources and their corresponding sparse modulation profiles. Sparse modulation profiles were used in a FLD framework to classify individuals into the young and older categories. The results demonstrate the feasibility of the general approach, and confirm the potential applicability of the proposed method for real-world diagnostic problems.</description><subject>Accuracy</subject><subject>Adult</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Brain - physiology</subject><subject>Context</subject><subject>Dictionaries</subject><subject>Female</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Noise</subject><subject>Reliability</subject><subject>Speech</subject><subject>Training</subject><subject>Young Adult</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>1424441196</isbn><isbn>9781424441198</isbn><isbn>9781457717871</isbn><isbn>1457717875</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kF1LwzAUhuMXbs79ABEkf6AzJ0mTxrtZpg42hKng3UjTU4lsXWnawf69HZs7NwfO-_DCcwi5AzYCYOZxMn9OR5wBHykhVQzJGRkanYCMtQadaDgnfYjjJJIK4gtyA5JLKQGMuuwCZmSkEv3dI8MQflk3CSSCyWvS40IoJbXpkypd2RB84Z1t_Kakm4L6Mvdbn7d2FWhmA-a0u39Utg5IF1jVGLBsTnRWW19St_kpfeO3SCvbNFiX4YmOadGWbs_ZFZ0vpjQ0bb67JVdF14zD4x6Qr5fJZ_oWzd5fp-l4FnnBoImcK6QV3ORcF9neWSBqaxiPDVeGoygApGZopUYRF4lTOROMxZlxzpnOb0AeDr1Vm60xX1a1X9t6t_xX74D7A-AR8RQfHy3-ANE0a10</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Ramezani, M.</creator><creator>Abolmaesumi, P.</creator><creator>Marble, K.</creator><creator>MacDonald, H.</creator><creator>Johnsrude, I.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20120101</creationdate><title>Classification of individuals based on Sparse Representation of brain cognitive patterns: A functional MRI study</title><author>Ramezani, M. ; Abolmaesumi, P. ; Marble, K. ; MacDonald, H. ; Johnsrude, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i301t-ccf4a329d27fb97813ee7a902592692e3f11470ea47e35f8c6d03005b9ccc9233</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Adult</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Brain - physiology</topic><topic>Context</topic><topic>Dictionaries</topic><topic>Female</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Noise</topic><topic>Reliability</topic><topic>Speech</topic><topic>Training</topic><topic>Young Adult</topic><toplevel>online_resources</toplevel><creatorcontrib>Ramezani, M.</creatorcontrib><creatorcontrib>Abolmaesumi, P.</creatorcontrib><creatorcontrib>Marble, K.</creatorcontrib><creatorcontrib>MacDonald, H.</creatorcontrib><creatorcontrib>Johnsrude, I.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ramezani, M.</au><au>Abolmaesumi, P.</au><au>Marble, K.</au><au>MacDonald, H.</au><au>Johnsrude, I.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Classification of individuals based on Sparse Representation of brain cognitive patterns: A functional MRI study</atitle><btitle>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>EMBC</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><spage>2688</spage><epage>2691</epage><pages>2688-2691</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>1424441196</isbn><isbn>9781424441198</isbn><eisbn>9781457717871</eisbn><eisbn>1457717875</eisbn><abstract>Many neurological disorders can change patterns of brain activity observed in functional imaging studies. These functional differences may be useful for classification of individuals into diagnostic categories. However, due to the high dimensionality of the input feature space and small set of subjects that are usually available, classification based on fMRI data is not trivial. Here, we evaluate the use of a Sparse Representation Analysis method within a Fisher Linear Discriminant (FLD) classification method, taking functional patterns characteristic of different cognitive tasks as the data input. As a test dataset, with a clear `gold-standard' classification, we attempt to classify individuals as young, or older, based only on functional activation patterns in a speech listening task. Thirty two young (age: 19-26) and older (age: 57-73) adults (16 each) were scanned while listening to noise and to sentences degraded with noise, half of which contained meaningful context that could be used to enhance intelligibility. Different functional contrast images were used within K-SVD to generate basis activation sources and their corresponding sparse modulation profiles. Sparse modulation profiles were used in a FLD framework to classify individuals into the young and older categories. The results demonstrate the feasibility of the general approach, and confirm the potential applicability of the proposed method for real-world diagnostic problems.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23366479</pmid><doi>10.1109/EMBC.2012.6346518</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1094-687X |
ispartof | 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, Vol.2012, p.2688-2691 |
issn | 1094-687X 1557-170X 1558-4615 |
language | eng |
recordid | cdi_ieee_primary_6346518 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Adult Aged Algorithms Brain - physiology Context Dictionaries Female Humans Magnetic Resonance Imaging - methods Male Middle Aged Noise Reliability Speech Training Young Adult |
title | Classification of individuals based on Sparse Representation of brain cognitive patterns: A functional MRI study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A35%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Classification%20of%20individuals%20based%20on%20Sparse%20Representation%20of%20brain%20cognitive%20patterns:%20A%20functional%20MRI%20study&rft.btitle=2012%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Ramezani,%20M.&rft.date=2012-01-01&rft.volume=2012&rft.spage=2688&rft.epage=2691&rft.pages=2688-2691&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=1424441196&rft.isbn_list=9781424441198&rft_id=info:doi/10.1109/EMBC.2012.6346518&rft_dat=%3Cpubmed_6IE%3E23366479%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457717871&rft.eisbn_list=1457717875&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23366479&rft_ieee_id=6346518&rfr_iscdi=true |