A mathematical model to predict the optimal test line location and sample volume for lateral flow immunoassays
Lateral flow immunoassay (LFIA) platform is one of the most relevant technologies for screening and diagnosing clinical conditions [1]. However due to low sensitivity and poor repeatability of the platform it has been used only for limited and non-critical tests [2] [5]. Mathematical models have bee...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2411 |
---|---|
container_issue | |
container_start_page | 2408 |
container_title | |
container_volume | 2012 |
creator | Ragavendar, M. S. Anmol, C. M. |
description | Lateral flow immunoassay (LFIA) platform is one of the most relevant technologies for screening and diagnosing clinical conditions [1]. However due to low sensitivity and poor repeatability of the platform it has been used only for limited and non-critical tests [2] [5]. Mathematical models have been used to understand the principles of capillary flow and antibody antigen based immuno reactions in nitrocellulose membrane typically seen in LFIA [4]. The model presented in this paper predicts the optimized location of test line on LFIA strip, sample volume and total reaction time that is needed to achieve the required sensitivity for different analytes on a case to case basis. The membrane properties like capillary flow time (s/cm), concentration and affinity constants of antibodies can be varied and the corresponding effect on strip design can be found. Hence this model can be used as a design tool to optimize the LFIA strip construction and reagent development processes. |
doi_str_mv | 10.1109/EMBC.2012.6346449 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6346449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6346449</ieee_id><sourcerecordid>23366410</sourcerecordid><originalsourceid>FETCH-LOGICAL-i301t-2346eae35ea849e3c0cfcff1c2255b308d8b67c4d29f186850de30e89d934bbb3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhM2faCl9AISE_AIp3thx7CNU5Ucq4gISt8qJNyLIjqM4BfXtsdTCHnYP38xKM4RcAVsAMH27erlfLnIG-UJyIYXQR2SuSwWiKEsoVQnHZApFoTIhoTghFyByIQSAlqcJMC0yqcqPCZnH-MXSKFCciXMyyTmXUgCbku6OejN-YlptbRz1waKjY6D9gLatR5oYDf3Y-gRHjCN1bYfUhToZQkdNZ2k0vndIv4PbeqRNGKgzIw7J0LjwQ1vvt10wMZpdvCRnjXER54c7I-8Pq7flU7Z-fXxe3q2zljMYszzFRYO8QKOERl6zuqmbBuo8L4qKM2VVJcta2Fw3oKQqmEXOUGmruaiqis_Izf5vv6082k0_pADDbvMXPAmu94IWEf_xoWb-CwPza34</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A mathematical model to predict the optimal test line location and sample volume for lateral flow immunoassays</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ragavendar, M. S. ; Anmol, C. M.</creator><creatorcontrib>Ragavendar, M. S. ; Anmol, C. M.</creatorcontrib><description>Lateral flow immunoassay (LFIA) platform is one of the most relevant technologies for screening and diagnosing clinical conditions [1]. However due to low sensitivity and poor repeatability of the platform it has been used only for limited and non-critical tests [2] [5]. Mathematical models have been used to understand the principles of capillary flow and antibody antigen based immuno reactions in nitrocellulose membrane typically seen in LFIA [4]. The model presented in this paper predicts the optimized location of test line on LFIA strip, sample volume and total reaction time that is needed to achieve the required sensitivity for different analytes on a case to case basis. The membrane properties like capillary flow time (s/cm), concentration and affinity constants of antibodies can be varied and the corresponding effect on strip design can be found. Hence this model can be used as a design tool to optimize the LFIA strip construction and reagent development processes.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 1424441196</identifier><identifier>ISBN: 9781424441198</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 9781457717871</identifier><identifier>EISBN: 1457717875</identifier><identifier>DOI: 10.1109/EMBC.2012.6346449</identifier><identifier>PMID: 23366410</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Capillary Action ; Computer Simulation ; Computer-Aided Design ; Equations ; Equipment Design ; Equipment Failure Analysis ; Immune system ; Immunoassay - instrumentation ; Mathematical model ; Membranes, Artificial ; Models, Theoretical ; Optimized production technology ; Reagent Strips ; Rheology - instrumentation ; Sensitivity ; Strips</subject><ispartof>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, Vol.2012, p.2408-2411</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6346449$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6346449$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23366410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ragavendar, M. S.</creatorcontrib><creatorcontrib>Anmol, C. M.</creatorcontrib><title>A mathematical model to predict the optimal test line location and sample volume for lateral flow immunoassays</title><title>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>EMBC</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>Lateral flow immunoassay (LFIA) platform is one of the most relevant technologies for screening and diagnosing clinical conditions [1]. However due to low sensitivity and poor repeatability of the platform it has been used only for limited and non-critical tests [2] [5]. Mathematical models have been used to understand the principles of capillary flow and antibody antigen based immuno reactions in nitrocellulose membrane typically seen in LFIA [4]. The model presented in this paper predicts the optimized location of test line on LFIA strip, sample volume and total reaction time that is needed to achieve the required sensitivity for different analytes on a case to case basis. The membrane properties like capillary flow time (s/cm), concentration and affinity constants of antibodies can be varied and the corresponding effect on strip design can be found. Hence this model can be used as a design tool to optimize the LFIA strip construction and reagent development processes.</description><subject>Capillary Action</subject><subject>Computer Simulation</subject><subject>Computer-Aided Design</subject><subject>Equations</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Immune system</subject><subject>Immunoassay - instrumentation</subject><subject>Mathematical model</subject><subject>Membranes, Artificial</subject><subject>Models, Theoretical</subject><subject>Optimized production technology</subject><subject>Reagent Strips</subject><subject>Rheology - instrumentation</subject><subject>Sensitivity</subject><subject>Strips</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>1424441196</isbn><isbn>9781424441198</isbn><isbn>9781457717871</isbn><isbn>1457717875</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kM1OwzAQhM2faCl9AISE_AIp3thx7CNU5Ucq4gISt8qJNyLIjqM4BfXtsdTCHnYP38xKM4RcAVsAMH27erlfLnIG-UJyIYXQR2SuSwWiKEsoVQnHZApFoTIhoTghFyByIQSAlqcJMC0yqcqPCZnH-MXSKFCciXMyyTmXUgCbku6OejN-YlptbRz1waKjY6D9gLatR5oYDf3Y-gRHjCN1bYfUhToZQkdNZ2k0vndIv4PbeqRNGKgzIw7J0LjwQ1vvt10wMZpdvCRnjXER54c7I-8Pq7flU7Z-fXxe3q2zljMYszzFRYO8QKOERl6zuqmbBuo8L4qKM2VVJcta2Fw3oKQqmEXOUGmruaiqis_Izf5vv6082k0_pADDbvMXPAmu94IWEf_xoWb-CwPza34</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Ragavendar, M. S.</creator><creator>Anmol, C. M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20120101</creationdate><title>A mathematical model to predict the optimal test line location and sample volume for lateral flow immunoassays</title><author>Ragavendar, M. S. ; Anmol, C. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i301t-2346eae35ea849e3c0cfcff1c2255b308d8b67c4d29f186850de30e89d934bbb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Capillary Action</topic><topic>Computer Simulation</topic><topic>Computer-Aided Design</topic><topic>Equations</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Immune system</topic><topic>Immunoassay - instrumentation</topic><topic>Mathematical model</topic><topic>Membranes, Artificial</topic><topic>Models, Theoretical</topic><topic>Optimized production technology</topic><topic>Reagent Strips</topic><topic>Rheology - instrumentation</topic><topic>Sensitivity</topic><topic>Strips</topic><toplevel>online_resources</toplevel><creatorcontrib>Ragavendar, M. S.</creatorcontrib><creatorcontrib>Anmol, C. M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ragavendar, M. S.</au><au>Anmol, C. M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A mathematical model to predict the optimal test line location and sample volume for lateral flow immunoassays</atitle><btitle>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>EMBC</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><spage>2408</spage><epage>2411</epage><pages>2408-2411</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>1424441196</isbn><isbn>9781424441198</isbn><eisbn>9781457717871</eisbn><eisbn>1457717875</eisbn><abstract>Lateral flow immunoassay (LFIA) platform is one of the most relevant technologies for screening and diagnosing clinical conditions [1]. However due to low sensitivity and poor repeatability of the platform it has been used only for limited and non-critical tests [2] [5]. Mathematical models have been used to understand the principles of capillary flow and antibody antigen based immuno reactions in nitrocellulose membrane typically seen in LFIA [4]. The model presented in this paper predicts the optimized location of test line on LFIA strip, sample volume and total reaction time that is needed to achieve the required sensitivity for different analytes on a case to case basis. The membrane properties like capillary flow time (s/cm), concentration and affinity constants of antibodies can be varied and the corresponding effect on strip design can be found. Hence this model can be used as a design tool to optimize the LFIA strip construction and reagent development processes.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23366410</pmid><doi>10.1109/EMBC.2012.6346449</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1094-687X |
ispartof | 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, Vol.2012, p.2408-2411 |
issn | 1094-687X 1557-170X 1558-4615 |
language | eng |
recordid | cdi_ieee_primary_6346449 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Capillary Action Computer Simulation Computer-Aided Design Equations Equipment Design Equipment Failure Analysis Immune system Immunoassay - instrumentation Mathematical model Membranes, Artificial Models, Theoretical Optimized production technology Reagent Strips Rheology - instrumentation Sensitivity Strips |
title | A mathematical model to predict the optimal test line location and sample volume for lateral flow immunoassays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A19%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20mathematical%20model%20to%20predict%20the%20optimal%20test%20line%20location%20and%20sample%20volume%20for%20lateral%20flow%20immunoassays&rft.btitle=2012%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Ragavendar,%20M.%20S.&rft.date=2012-01-01&rft.volume=2012&rft.spage=2408&rft.epage=2411&rft.pages=2408-2411&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=1424441196&rft.isbn_list=9781424441198&rft_id=info:doi/10.1109/EMBC.2012.6346449&rft_dat=%3Cpubmed_6IE%3E23366410%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457717871&rft.eisbn_list=1457717875&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23366410&rft_ieee_id=6346449&rfr_iscdi=true |