A mathematical model to predict the optimal test line location and sample volume for lateral flow immunoassays

Lateral flow immunoassay (LFIA) platform is one of the most relevant technologies for screening and diagnosing clinical conditions [1]. However due to low sensitivity and poor repeatability of the platform it has been used only for limited and non-critical tests [2] [5]. Mathematical models have bee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ragavendar, M. S., Anmol, C. M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2411
container_issue
container_start_page 2408
container_title
container_volume 2012
creator Ragavendar, M. S.
Anmol, C. M.
description Lateral flow immunoassay (LFIA) platform is one of the most relevant technologies for screening and diagnosing clinical conditions [1]. However due to low sensitivity and poor repeatability of the platform it has been used only for limited and non-critical tests [2] [5]. Mathematical models have been used to understand the principles of capillary flow and antibody antigen based immuno reactions in nitrocellulose membrane typically seen in LFIA [4]. The model presented in this paper predicts the optimized location of test line on LFIA strip, sample volume and total reaction time that is needed to achieve the required sensitivity for different analytes on a case to case basis. The membrane properties like capillary flow time (s/cm), concentration and affinity constants of antibodies can be varied and the corresponding effect on strip design can be found. Hence this model can be used as a design tool to optimize the LFIA strip construction and reagent development processes.
doi_str_mv 10.1109/EMBC.2012.6346449
format Conference Proceeding
fullrecord <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6346449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6346449</ieee_id><sourcerecordid>23366410</sourcerecordid><originalsourceid>FETCH-LOGICAL-i301t-2346eae35ea849e3c0cfcff1c2255b308d8b67c4d29f186850de30e89d934bbb3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhM2faCl9AISE_AIp3thx7CNU5Ucq4gISt8qJNyLIjqM4BfXtsdTCHnYP38xKM4RcAVsAMH27erlfLnIG-UJyIYXQR2SuSwWiKEsoVQnHZApFoTIhoTghFyByIQSAlqcJMC0yqcqPCZnH-MXSKFCciXMyyTmXUgCbku6OejN-YlptbRz1waKjY6D9gLatR5oYDf3Y-gRHjCN1bYfUhToZQkdNZ2k0vndIv4PbeqRNGKgzIw7J0LjwQ1vvt10wMZpdvCRnjXER54c7I-8Pq7flU7Z-fXxe3q2zljMYszzFRYO8QKOERl6zuqmbBuo8L4qKM2VVJcta2Fw3oKQqmEXOUGmruaiqis_Izf5vv6082k0_pADDbvMXPAmu94IWEf_xoWb-CwPza34</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A mathematical model to predict the optimal test line location and sample volume for lateral flow immunoassays</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ragavendar, M. S. ; Anmol, C. M.</creator><creatorcontrib>Ragavendar, M. S. ; Anmol, C. M.</creatorcontrib><description>Lateral flow immunoassay (LFIA) platform is one of the most relevant technologies for screening and diagnosing clinical conditions [1]. However due to low sensitivity and poor repeatability of the platform it has been used only for limited and non-critical tests [2] [5]. Mathematical models have been used to understand the principles of capillary flow and antibody antigen based immuno reactions in nitrocellulose membrane typically seen in LFIA [4]. The model presented in this paper predicts the optimized location of test line on LFIA strip, sample volume and total reaction time that is needed to achieve the required sensitivity for different analytes on a case to case basis. The membrane properties like capillary flow time (s/cm), concentration and affinity constants of antibodies can be varied and the corresponding effect on strip design can be found. Hence this model can be used as a design tool to optimize the LFIA strip construction and reagent development processes.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 1424441196</identifier><identifier>ISBN: 9781424441198</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 9781457717871</identifier><identifier>EISBN: 1457717875</identifier><identifier>DOI: 10.1109/EMBC.2012.6346449</identifier><identifier>PMID: 23366410</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Capillary Action ; Computer Simulation ; Computer-Aided Design ; Equations ; Equipment Design ; Equipment Failure Analysis ; Immune system ; Immunoassay - instrumentation ; Mathematical model ; Membranes, Artificial ; Models, Theoretical ; Optimized production technology ; Reagent Strips ; Rheology - instrumentation ; Sensitivity ; Strips</subject><ispartof>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, Vol.2012, p.2408-2411</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6346449$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6346449$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23366410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ragavendar, M. S.</creatorcontrib><creatorcontrib>Anmol, C. M.</creatorcontrib><title>A mathematical model to predict the optimal test line location and sample volume for lateral flow immunoassays</title><title>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>EMBC</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>Lateral flow immunoassay (LFIA) platform is one of the most relevant technologies for screening and diagnosing clinical conditions [1]. However due to low sensitivity and poor repeatability of the platform it has been used only for limited and non-critical tests [2] [5]. Mathematical models have been used to understand the principles of capillary flow and antibody antigen based immuno reactions in nitrocellulose membrane typically seen in LFIA [4]. The model presented in this paper predicts the optimized location of test line on LFIA strip, sample volume and total reaction time that is needed to achieve the required sensitivity for different analytes on a case to case basis. The membrane properties like capillary flow time (s/cm), concentration and affinity constants of antibodies can be varied and the corresponding effect on strip design can be found. Hence this model can be used as a design tool to optimize the LFIA strip construction and reagent development processes.</description><subject>Capillary Action</subject><subject>Computer Simulation</subject><subject>Computer-Aided Design</subject><subject>Equations</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Immune system</subject><subject>Immunoassay - instrumentation</subject><subject>Mathematical model</subject><subject>Membranes, Artificial</subject><subject>Models, Theoretical</subject><subject>Optimized production technology</subject><subject>Reagent Strips</subject><subject>Rheology - instrumentation</subject><subject>Sensitivity</subject><subject>Strips</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>1424441196</isbn><isbn>9781424441198</isbn><isbn>9781457717871</isbn><isbn>1457717875</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kM1OwzAQhM2faCl9AISE_AIp3thx7CNU5Ucq4gISt8qJNyLIjqM4BfXtsdTCHnYP38xKM4RcAVsAMH27erlfLnIG-UJyIYXQR2SuSwWiKEsoVQnHZApFoTIhoTghFyByIQSAlqcJMC0yqcqPCZnH-MXSKFCciXMyyTmXUgCbku6OejN-YlptbRz1waKjY6D9gLatR5oYDf3Y-gRHjCN1bYfUhToZQkdNZ2k0vndIv4PbeqRNGKgzIw7J0LjwQ1vvt10wMZpdvCRnjXER54c7I-8Pq7flU7Z-fXxe3q2zljMYszzFRYO8QKOERl6zuqmbBuo8L4qKM2VVJcta2Fw3oKQqmEXOUGmruaiqis_Izf5vv6082k0_pADDbvMXPAmu94IWEf_xoWb-CwPza34</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Ragavendar, M. S.</creator><creator>Anmol, C. M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20120101</creationdate><title>A mathematical model to predict the optimal test line location and sample volume for lateral flow immunoassays</title><author>Ragavendar, M. S. ; Anmol, C. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i301t-2346eae35ea849e3c0cfcff1c2255b308d8b67c4d29f186850de30e89d934bbb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Capillary Action</topic><topic>Computer Simulation</topic><topic>Computer-Aided Design</topic><topic>Equations</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Immune system</topic><topic>Immunoassay - instrumentation</topic><topic>Mathematical model</topic><topic>Membranes, Artificial</topic><topic>Models, Theoretical</topic><topic>Optimized production technology</topic><topic>Reagent Strips</topic><topic>Rheology - instrumentation</topic><topic>Sensitivity</topic><topic>Strips</topic><toplevel>online_resources</toplevel><creatorcontrib>Ragavendar, M. S.</creatorcontrib><creatorcontrib>Anmol, C. M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ragavendar, M. S.</au><au>Anmol, C. M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A mathematical model to predict the optimal test line location and sample volume for lateral flow immunoassays</atitle><btitle>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>EMBC</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><spage>2408</spage><epage>2411</epage><pages>2408-2411</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>1424441196</isbn><isbn>9781424441198</isbn><eisbn>9781457717871</eisbn><eisbn>1457717875</eisbn><abstract>Lateral flow immunoassay (LFIA) platform is one of the most relevant technologies for screening and diagnosing clinical conditions [1]. However due to low sensitivity and poor repeatability of the platform it has been used only for limited and non-critical tests [2] [5]. Mathematical models have been used to understand the principles of capillary flow and antibody antigen based immuno reactions in nitrocellulose membrane typically seen in LFIA [4]. The model presented in this paper predicts the optimized location of test line on LFIA strip, sample volume and total reaction time that is needed to achieve the required sensitivity for different analytes on a case to case basis. The membrane properties like capillary flow time (s/cm), concentration and affinity constants of antibodies can be varied and the corresponding effect on strip design can be found. Hence this model can be used as a design tool to optimize the LFIA strip construction and reagent development processes.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23366410</pmid><doi>10.1109/EMBC.2012.6346449</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, Vol.2012, p.2408-2411
issn 1094-687X
1557-170X
1558-4615
language eng
recordid cdi_ieee_primary_6346449
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Capillary Action
Computer Simulation
Computer-Aided Design
Equations
Equipment Design
Equipment Failure Analysis
Immune system
Immunoassay - instrumentation
Mathematical model
Membranes, Artificial
Models, Theoretical
Optimized production technology
Reagent Strips
Rheology - instrumentation
Sensitivity
Strips
title A mathematical model to predict the optimal test line location and sample volume for lateral flow immunoassays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A19%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20mathematical%20model%20to%20predict%20the%20optimal%20test%20line%20location%20and%20sample%20volume%20for%20lateral%20flow%20immunoassays&rft.btitle=2012%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Ragavendar,%20M.%20S.&rft.date=2012-01-01&rft.volume=2012&rft.spage=2408&rft.epage=2411&rft.pages=2408-2411&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=1424441196&rft.isbn_list=9781424441198&rft_id=info:doi/10.1109/EMBC.2012.6346449&rft_dat=%3Cpubmed_6IE%3E23366410%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457717871&rft.eisbn_list=1457717875&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23366410&rft_ieee_id=6346449&rfr_iscdi=true