Unsupervised tumour segmentation in PET based on local and global intensity fitting active surface and alpha matting

This paper proposes an unsupervised tumour segmentation scheme for PET data. The method computes the volume of interests (VOIs) with subpixel precision by considering the limited resolution and partial volume effect. Firstly, it uses local and global intensity active surface modelling to segment VOI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ziming Zeng, Shepherd, T., Zwiggelaar, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2342
container_issue
container_start_page 2339
container_title
container_volume 2012
creator Ziming Zeng
Shepherd, T.
Zwiggelaar, R.
description This paper proposes an unsupervised tumour segmentation scheme for PET data. The method computes the volume of interests (VOIs) with subpixel precision by considering the limited resolution and partial volume effect. Firstly, it uses local and global intensity active surface modelling to segment VOIs, then an alpha matting method is used to eliminate false negative classification and refine the segmentation results. We have validated our method on real PET images of head-and-neck cancer patients as well as images of a custom designed PET phantom. Experiments show that our method can generate more accurate segmentation results compared with alternative approaches.
doi_str_mv 10.1109/EMBC.2012.6346432
format Conference Proceeding
fullrecord <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6346432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6346432</ieee_id><sourcerecordid>23366393</sourcerecordid><originalsourceid>FETCH-LOGICAL-i301t-4411ac77eaa6fe9af1cc936000de752325cdefade8145be978cb40573419c5d83</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRc1LtJR-AEJC_oEUO37FS6jKQyqCRSuxqxxnUowSp4qdSv170haYzczVPRrpXoRuKJlQSvT97O1xOkkJTSeScclZeoLGWmWUC6WoyhQ9RUMqRJZwScUZuqI85ZxTquV5bxDNE5mpzwEah_BN-sloxgi_RIOUMSmZZkMUlz50G2i3LkCBY1c3XYsDrGvw0UTXeOw8_pgtcG72QK-rxpoKG1_gddXk_el8BB9c3OHSxej8Ghsb3RZw6NrSWDiwptp8GVybA3CNLkpTBRj_7hFaPs0W05dk_v78On2YJ44RGpN9FGOVAmNkCdqU1FrNZB-kACVSlgpbQGkK2DeSQ9-MzTkRinGqrSgyNkJ3x7-bLq-hWG1aV5t2t_qL3wO3R8ABwL_9Wzb7ARmdbaM</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Unsupervised tumour segmentation in PET based on local and global intensity fitting active surface and alpha matting</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ziming Zeng ; Shepherd, T. ; Zwiggelaar, R.</creator><creatorcontrib>Ziming Zeng ; Shepherd, T. ; Zwiggelaar, R.</creatorcontrib><description>This paper proposes an unsupervised tumour segmentation scheme for PET data. The method computes the volume of interests (VOIs) with subpixel precision by considering the limited resolution and partial volume effect. Firstly, it uses local and global intensity active surface modelling to segment VOIs, then an alpha matting method is used to eliminate false negative classification and refine the segmentation results. We have validated our method on real PET images of head-and-neck cancer patients as well as images of a custom designed PET phantom. Experiments show that our method can generate more accurate segmentation results compared with alternative approaches.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 1424441196</identifier><identifier>ISBN: 9781424441198</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 9781457717871</identifier><identifier>EISBN: 1457717875</identifier><identifier>DOI: 10.1109/EMBC.2012.6346432</identifier><identifier>PMID: 23366393</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial Intelligence ; Cancer ; Head and Neck Neoplasms - diagnostic imaging ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image resolution ; Image segmentation ; Imaging phantoms ; Pattern Recognition, Automated - methods ; Phantoms ; Positron emission tomography ; Positron-Emission Tomography - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Tumors</subject><ispartof>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, Vol.2012, p.2339-2342</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6346432$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6346432$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23366393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ziming Zeng</creatorcontrib><creatorcontrib>Shepherd, T.</creatorcontrib><creatorcontrib>Zwiggelaar, R.</creatorcontrib><title>Unsupervised tumour segmentation in PET based on local and global intensity fitting active surface and alpha matting</title><title>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>EMBC</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>This paper proposes an unsupervised tumour segmentation scheme for PET data. The method computes the volume of interests (VOIs) with subpixel precision by considering the limited resolution and partial volume effect. Firstly, it uses local and global intensity active surface modelling to segment VOIs, then an alpha matting method is used to eliminate false negative classification and refine the segmentation results. We have validated our method on real PET images of head-and-neck cancer patients as well as images of a custom designed PET phantom. Experiments show that our method can generate more accurate segmentation results compared with alternative approaches.</description><subject>Artificial Intelligence</subject><subject>Cancer</subject><subject>Head and Neck Neoplasms - diagnostic imaging</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Imaging phantoms</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Phantoms</subject><subject>Positron emission tomography</subject><subject>Positron-Emission Tomography - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Tumors</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>1424441196</isbn><isbn>9781424441198</isbn><isbn>9781457717871</isbn><isbn>1457717875</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kMtOwzAQRc1LtJR-AEJC_oEUO37FS6jKQyqCRSuxqxxnUowSp4qdSv170haYzczVPRrpXoRuKJlQSvT97O1xOkkJTSeScclZeoLGWmWUC6WoyhQ9RUMqRJZwScUZuqI85ZxTquV5bxDNE5mpzwEah_BN-sloxgi_RIOUMSmZZkMUlz50G2i3LkCBY1c3XYsDrGvw0UTXeOw8_pgtcG72QK-rxpoKG1_gddXk_el8BB9c3OHSxej8Ghsb3RZw6NrSWDiwptp8GVybA3CNLkpTBRj_7hFaPs0W05dk_v78On2YJ44RGpN9FGOVAmNkCdqU1FrNZB-kACVSlgpbQGkK2DeSQ9-MzTkRinGqrSgyNkJ3x7-bLq-hWG1aV5t2t_qL3wO3R8ABwL_9Wzb7ARmdbaM</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Ziming Zeng</creator><creator>Shepherd, T.</creator><creator>Zwiggelaar, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20120101</creationdate><title>Unsupervised tumour segmentation in PET based on local and global intensity fitting active surface and alpha matting</title><author>Ziming Zeng ; Shepherd, T. ; Zwiggelaar, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i301t-4411ac77eaa6fe9af1cc936000de752325cdefade8145be978cb40573419c5d83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Artificial Intelligence</topic><topic>Cancer</topic><topic>Head and Neck Neoplasms - diagnostic imaging</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Imaging phantoms</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Phantoms</topic><topic>Positron emission tomography</topic><topic>Positron-Emission Tomography - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Tumors</topic><toplevel>online_resources</toplevel><creatorcontrib>Ziming Zeng</creatorcontrib><creatorcontrib>Shepherd, T.</creatorcontrib><creatorcontrib>Zwiggelaar, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ziming Zeng</au><au>Shepherd, T.</au><au>Zwiggelaar, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Unsupervised tumour segmentation in PET based on local and global intensity fitting active surface and alpha matting</atitle><btitle>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>EMBC</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><spage>2339</spage><epage>2342</epage><pages>2339-2342</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>1424441196</isbn><isbn>9781424441198</isbn><eisbn>9781457717871</eisbn><eisbn>1457717875</eisbn><abstract>This paper proposes an unsupervised tumour segmentation scheme for PET data. The method computes the volume of interests (VOIs) with subpixel precision by considering the limited resolution and partial volume effect. Firstly, it uses local and global intensity active surface modelling to segment VOIs, then an alpha matting method is used to eliminate false negative classification and refine the segmentation results. We have validated our method on real PET images of head-and-neck cancer patients as well as images of a custom designed PET phantom. Experiments show that our method can generate more accurate segmentation results compared with alternative approaches.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23366393</pmid><doi>10.1109/EMBC.2012.6346432</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, Vol.2012, p.2339-2342
issn 1094-687X
1557-170X
1558-4615
language eng
recordid cdi_ieee_primary_6346432
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial Intelligence
Cancer
Head and Neck Neoplasms - diagnostic imaging
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image resolution
Image segmentation
Imaging phantoms
Pattern Recognition, Automated - methods
Phantoms
Positron emission tomography
Positron-Emission Tomography - methods
Reproducibility of Results
Sensitivity and Specificity
Tumors
title Unsupervised tumour segmentation in PET based on local and global intensity fitting active surface and alpha matting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A51%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Unsupervised%20tumour%20segmentation%20in%20PET%20based%20on%20local%20and%20global%20intensity%20fitting%20active%20surface%20and%20alpha%20matting&rft.btitle=2012%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Ziming%20Zeng&rft.date=2012-01-01&rft.volume=2012&rft.spage=2339&rft.epage=2342&rft.pages=2339-2342&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=1424441196&rft.isbn_list=9781424441198&rft_id=info:doi/10.1109/EMBC.2012.6346432&rft_dat=%3Cpubmed_6IE%3E23366393%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457717871&rft.eisbn_list=1457717875&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23366393&rft_ieee_id=6346432&rfr_iscdi=true