Unsupervised tumour segmentation in PET based on local and global intensity fitting active surface and alpha matting

This paper proposes an unsupervised tumour segmentation scheme for PET data. The method computes the volume of interests (VOIs) with subpixel precision by considering the limited resolution and partial volume effect. Firstly, it uses local and global intensity active surface modelling to segment VOI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ziming Zeng, Shepherd, T., Zwiggelaar, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes an unsupervised tumour segmentation scheme for PET data. The method computes the volume of interests (VOIs) with subpixel precision by considering the limited resolution and partial volume effect. Firstly, it uses local and global intensity active surface modelling to segment VOIs, then an alpha matting method is used to eliminate false negative classification and refine the segmentation results. We have validated our method on real PET images of head-and-neck cancer patients as well as images of a custom designed PET phantom. Experiments show that our method can generate more accurate segmentation results compared with alternative approaches.
ISSN:1094-687X
1557-170X
1558-4615
DOI:10.1109/EMBC.2012.6346432