Comparison of the performances of Distribution State Estimation algorithms: Classical Newton approach and PSO approach

Existing electricity distribution management systems (DMS) have been designed using operational and algorithmic procedures that are highly centralised. As more of the distribution network becomes active, accurately estimating the state of the system becomes essential and therefore DMS must include f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chilard, O., Grenard, S., Devaux, O.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue
container_start_page 1
container_title
container_volume
creator Chilard, O.
Grenard, S.
Devaux, O.
description Existing electricity distribution management systems (DMS) have been designed using operational and algorithmic procedures that are highly centralised. As more of the distribution network becomes active, accurately estimating the state of the system becomes essential and therefore DMS must include functions to achieve the required near to real-time state estimation. The objective of this paper is to evaluate and to compare the performances obtained with two different solutions developed by EDF R&D for the Distribution State Estimator (DSE) algorithm for MV networks: classical optimization resolution approach using a Newton resolution algorithm on one side and a Particle Swarm Optimization algorithm on the other side. The performances of these solutions are evaluated in terms of precisions obtained for the estimates related to the primary and secondary variables and of computation times.
doi_str_mv 10.1109/PESGM.2012.6344688
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6344688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6344688</ieee_id><sourcerecordid>6344688</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-804d500581f72f6b095f313e63084ba7c40004f7963788732166737015d8a23c3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhI0Aibb0BeDiF0jx-j_cUAgFqdBKhXPlpjY1SprINiDenhQKp9V8uxrNLEIXQCYAJL9alMvp44QSoBPJOJdaH6FxrjRwqRhVVNNjNPwTCk7QAHJGMyFAnaFhjG-ECAacDtBH0TadCT62O9w6nLYWdza4NjRmV9m4Z7c-puDX78n3N8tkksVlTL4xP8DUr23wadvEa1zUJkZfmRo_2c-0X3ZdaE21xWa3wYvl_B-co1Nn6mjHhzlCL3flc3GfzebTh-JmlnlQImWa8I3os2pwijq5JrlwDJiVjGi-NqrihBDuVC6Z0rpvC7LvrAiIjTaUVWyELn99vbV21YU-dfhaHX7GvgFdkF44</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Comparison of the performances of Distribution State Estimation algorithms: Classical Newton approach and PSO approach</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chilard, O. ; Grenard, S. ; Devaux, O.</creator><creatorcontrib>Chilard, O. ; Grenard, S. ; Devaux, O.</creatorcontrib><description>Existing electricity distribution management systems (DMS) have been designed using operational and algorithmic procedures that are highly centralised. As more of the distribution network becomes active, accurately estimating the state of the system becomes essential and therefore DMS must include functions to achieve the required near to real-time state estimation. The objective of this paper is to evaluate and to compare the performances obtained with two different solutions developed by EDF R&amp;D for the Distribution State Estimator (DSE) algorithm for MV networks: classical optimization resolution approach using a Newton resolution algorithm on one side and a Particle Swarm Optimization algorithm on the other side. The performances of these solutions are evaluated in terms of precisions obtained for the estimates related to the primary and secondary variables and of computation times.</description><identifier>ISSN: 1932-5517</identifier><identifier>ISBN: 1467327271</identifier><identifier>ISBN: 9781467327275</identifier><identifier>EISBN: 9781467327282</identifier><identifier>EISBN: 1467327298</identifier><identifier>EISBN: 9781467327299</identifier><identifier>EISBN: 146732728X</identifier><identifier>DOI: 10.1109/PESGM.2012.6344688</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Distribution Management Systems ; Distribution State Estimation (DSE) ; Equations ; Mathematical model ; PSO algorithm ; SCADA ; Sensors ; State estimation ; Substations ; Vectors</subject><ispartof>2012 IEEE Power and Energy Society General Meeting, 2012, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6344688$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6344688$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chilard, O.</creatorcontrib><creatorcontrib>Grenard, S.</creatorcontrib><creatorcontrib>Devaux, O.</creatorcontrib><title>Comparison of the performances of Distribution State Estimation algorithms: Classical Newton approach and PSO approach</title><title>2012 IEEE Power and Energy Society General Meeting</title><addtitle>PESGM</addtitle><description>Existing electricity distribution management systems (DMS) have been designed using operational and algorithmic procedures that are highly centralised. As more of the distribution network becomes active, accurately estimating the state of the system becomes essential and therefore DMS must include functions to achieve the required near to real-time state estimation. The objective of this paper is to evaluate and to compare the performances obtained with two different solutions developed by EDF R&amp;D for the Distribution State Estimator (DSE) algorithm for MV networks: classical optimization resolution approach using a Newton resolution algorithm on one side and a Particle Swarm Optimization algorithm on the other side. The performances of these solutions are evaluated in terms of precisions obtained for the estimates related to the primary and secondary variables and of computation times.</description><subject>Accuracy</subject><subject>Distribution Management Systems</subject><subject>Distribution State Estimation (DSE)</subject><subject>Equations</subject><subject>Mathematical model</subject><subject>PSO algorithm</subject><subject>SCADA</subject><subject>Sensors</subject><subject>State estimation</subject><subject>Substations</subject><subject>Vectors</subject><issn>1932-5517</issn><isbn>1467327271</isbn><isbn>9781467327275</isbn><isbn>9781467327282</isbn><isbn>1467327298</isbn><isbn>9781467327299</isbn><isbn>146732728X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhI0Aibb0BeDiF0jx-j_cUAgFqdBKhXPlpjY1SprINiDenhQKp9V8uxrNLEIXQCYAJL9alMvp44QSoBPJOJdaH6FxrjRwqRhVVNNjNPwTCk7QAHJGMyFAnaFhjG-ECAacDtBH0TadCT62O9w6nLYWdza4NjRmV9m4Z7c-puDX78n3N8tkksVlTL4xP8DUr23wadvEa1zUJkZfmRo_2c-0X3ZdaE21xWa3wYvl_B-co1Nn6mjHhzlCL3flc3GfzebTh-JmlnlQImWa8I3os2pwijq5JrlwDJiVjGi-NqrihBDuVC6Z0rpvC7LvrAiIjTaUVWyELn99vbV21YU-dfhaHX7GvgFdkF44</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Chilard, O.</creator><creator>Grenard, S.</creator><creator>Devaux, O.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201207</creationdate><title>Comparison of the performances of Distribution State Estimation algorithms: Classical Newton approach and PSO approach</title><author>Chilard, O. ; Grenard, S. ; Devaux, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-804d500581f72f6b095f313e63084ba7c40004f7963788732166737015d8a23c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Distribution Management Systems</topic><topic>Distribution State Estimation (DSE)</topic><topic>Equations</topic><topic>Mathematical model</topic><topic>PSO algorithm</topic><topic>SCADA</topic><topic>Sensors</topic><topic>State estimation</topic><topic>Substations</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Chilard, O.</creatorcontrib><creatorcontrib>Grenard, S.</creatorcontrib><creatorcontrib>Devaux, O.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chilard, O.</au><au>Grenard, S.</au><au>Devaux, O.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comparison of the performances of Distribution State Estimation algorithms: Classical Newton approach and PSO approach</atitle><btitle>2012 IEEE Power and Energy Society General Meeting</btitle><stitle>PESGM</stitle><date>2012-07</date><risdate>2012</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1932-5517</issn><isbn>1467327271</isbn><isbn>9781467327275</isbn><eisbn>9781467327282</eisbn><eisbn>1467327298</eisbn><eisbn>9781467327299</eisbn><eisbn>146732728X</eisbn><abstract>Existing electricity distribution management systems (DMS) have been designed using operational and algorithmic procedures that are highly centralised. As more of the distribution network becomes active, accurately estimating the state of the system becomes essential and therefore DMS must include functions to achieve the required near to real-time state estimation. The objective of this paper is to evaluate and to compare the performances obtained with two different solutions developed by EDF R&amp;D for the Distribution State Estimator (DSE) algorithm for MV networks: classical optimization resolution approach using a Newton resolution algorithm on one side and a Particle Swarm Optimization algorithm on the other side. The performances of these solutions are evaluated in terms of precisions obtained for the estimates related to the primary and secondary variables and of computation times.</abstract><pub>IEEE</pub><doi>10.1109/PESGM.2012.6344688</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-5517
ispartof 2012 IEEE Power and Energy Society General Meeting, 2012, p.1-7
issn 1932-5517
language eng
recordid cdi_ieee_primary_6344688
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Distribution Management Systems
Distribution State Estimation (DSE)
Equations
Mathematical model
PSO algorithm
SCADA
Sensors
State estimation
Substations
Vectors
title Comparison of the performances of Distribution State Estimation algorithms: Classical Newton approach and PSO approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A36%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comparison%20of%20the%20performances%20of%20Distribution%20State%20Estimation%20algorithms:%20Classical%20Newton%20approach%20and%20PSO%20approach&rft.btitle=2012%20IEEE%20Power%20and%20Energy%20Society%20General%20Meeting&rft.au=Chilard,%20O.&rft.date=2012-07&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1932-5517&rft.isbn=1467327271&rft.isbn_list=9781467327275&rft_id=info:doi/10.1109/PESGM.2012.6344688&rft_dat=%3Cieee_6IE%3E6344688%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467327282&rft.eisbn_list=1467327298&rft.eisbn_list=9781467327299&rft.eisbn_list=146732728X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6344688&rfr_iscdi=true