Comparison of the performances of Distribution State Estimation algorithms: Classical Newton approach and PSO approach
Existing electricity distribution management systems (DMS) have been designed using operational and algorithmic procedures that are highly centralised. As more of the distribution network becomes active, accurately estimating the state of the system becomes essential and therefore DMS must include f...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Chilard, O. Grenard, S. Devaux, O. |
description | Existing electricity distribution management systems (DMS) have been designed using operational and algorithmic procedures that are highly centralised. As more of the distribution network becomes active, accurately estimating the state of the system becomes essential and therefore DMS must include functions to achieve the required near to real-time state estimation. The objective of this paper is to evaluate and to compare the performances obtained with two different solutions developed by EDF R&D for the Distribution State Estimator (DSE) algorithm for MV networks: classical optimization resolution approach using a Newton resolution algorithm on one side and a Particle Swarm Optimization algorithm on the other side. The performances of these solutions are evaluated in terms of precisions obtained for the estimates related to the primary and secondary variables and of computation times. |
doi_str_mv | 10.1109/PESGM.2012.6344688 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6344688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6344688</ieee_id><sourcerecordid>6344688</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-804d500581f72f6b095f313e63084ba7c40004f7963788732166737015d8a23c3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhI0Aibb0BeDiF0jx-j_cUAgFqdBKhXPlpjY1SprINiDenhQKp9V8uxrNLEIXQCYAJL9alMvp44QSoBPJOJdaH6FxrjRwqRhVVNNjNPwTCk7QAHJGMyFAnaFhjG-ECAacDtBH0TadCT62O9w6nLYWdza4NjRmV9m4Z7c-puDX78n3N8tkksVlTL4xP8DUr23wadvEa1zUJkZfmRo_2c-0X3ZdaE21xWa3wYvl_B-co1Nn6mjHhzlCL3flc3GfzebTh-JmlnlQImWa8I3os2pwijq5JrlwDJiVjGi-NqrihBDuVC6Z0rpvC7LvrAiIjTaUVWyELn99vbV21YU-dfhaHX7GvgFdkF44</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Comparison of the performances of Distribution State Estimation algorithms: Classical Newton approach and PSO approach</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chilard, O. ; Grenard, S. ; Devaux, O.</creator><creatorcontrib>Chilard, O. ; Grenard, S. ; Devaux, O.</creatorcontrib><description>Existing electricity distribution management systems (DMS) have been designed using operational and algorithmic procedures that are highly centralised. As more of the distribution network becomes active, accurately estimating the state of the system becomes essential and therefore DMS must include functions to achieve the required near to real-time state estimation. The objective of this paper is to evaluate and to compare the performances obtained with two different solutions developed by EDF R&D for the Distribution State Estimator (DSE) algorithm for MV networks: classical optimization resolution approach using a Newton resolution algorithm on one side and a Particle Swarm Optimization algorithm on the other side. The performances of these solutions are evaluated in terms of precisions obtained for the estimates related to the primary and secondary variables and of computation times.</description><identifier>ISSN: 1932-5517</identifier><identifier>ISBN: 1467327271</identifier><identifier>ISBN: 9781467327275</identifier><identifier>EISBN: 9781467327282</identifier><identifier>EISBN: 1467327298</identifier><identifier>EISBN: 9781467327299</identifier><identifier>EISBN: 146732728X</identifier><identifier>DOI: 10.1109/PESGM.2012.6344688</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Distribution Management Systems ; Distribution State Estimation (DSE) ; Equations ; Mathematical model ; PSO algorithm ; SCADA ; Sensors ; State estimation ; Substations ; Vectors</subject><ispartof>2012 IEEE Power and Energy Society General Meeting, 2012, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6344688$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6344688$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chilard, O.</creatorcontrib><creatorcontrib>Grenard, S.</creatorcontrib><creatorcontrib>Devaux, O.</creatorcontrib><title>Comparison of the performances of Distribution State Estimation algorithms: Classical Newton approach and PSO approach</title><title>2012 IEEE Power and Energy Society General Meeting</title><addtitle>PESGM</addtitle><description>Existing electricity distribution management systems (DMS) have been designed using operational and algorithmic procedures that are highly centralised. As more of the distribution network becomes active, accurately estimating the state of the system becomes essential and therefore DMS must include functions to achieve the required near to real-time state estimation. The objective of this paper is to evaluate and to compare the performances obtained with two different solutions developed by EDF R&D for the Distribution State Estimator (DSE) algorithm for MV networks: classical optimization resolution approach using a Newton resolution algorithm on one side and a Particle Swarm Optimization algorithm on the other side. The performances of these solutions are evaluated in terms of precisions obtained for the estimates related to the primary and secondary variables and of computation times.</description><subject>Accuracy</subject><subject>Distribution Management Systems</subject><subject>Distribution State Estimation (DSE)</subject><subject>Equations</subject><subject>Mathematical model</subject><subject>PSO algorithm</subject><subject>SCADA</subject><subject>Sensors</subject><subject>State estimation</subject><subject>Substations</subject><subject>Vectors</subject><issn>1932-5517</issn><isbn>1467327271</isbn><isbn>9781467327275</isbn><isbn>9781467327282</isbn><isbn>1467327298</isbn><isbn>9781467327299</isbn><isbn>146732728X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhI0Aibb0BeDiF0jx-j_cUAgFqdBKhXPlpjY1SprINiDenhQKp9V8uxrNLEIXQCYAJL9alMvp44QSoBPJOJdaH6FxrjRwqRhVVNNjNPwTCk7QAHJGMyFAnaFhjG-ECAacDtBH0TadCT62O9w6nLYWdza4NjRmV9m4Z7c-puDX78n3N8tkksVlTL4xP8DUr23wadvEa1zUJkZfmRo_2c-0X3ZdaE21xWa3wYvl_B-co1Nn6mjHhzlCL3flc3GfzebTh-JmlnlQImWa8I3os2pwijq5JrlwDJiVjGi-NqrihBDuVC6Z0rpvC7LvrAiIjTaUVWyELn99vbV21YU-dfhaHX7GvgFdkF44</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Chilard, O.</creator><creator>Grenard, S.</creator><creator>Devaux, O.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201207</creationdate><title>Comparison of the performances of Distribution State Estimation algorithms: Classical Newton approach and PSO approach</title><author>Chilard, O. ; Grenard, S. ; Devaux, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-804d500581f72f6b095f313e63084ba7c40004f7963788732166737015d8a23c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Distribution Management Systems</topic><topic>Distribution State Estimation (DSE)</topic><topic>Equations</topic><topic>Mathematical model</topic><topic>PSO algorithm</topic><topic>SCADA</topic><topic>Sensors</topic><topic>State estimation</topic><topic>Substations</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Chilard, O.</creatorcontrib><creatorcontrib>Grenard, S.</creatorcontrib><creatorcontrib>Devaux, O.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chilard, O.</au><au>Grenard, S.</au><au>Devaux, O.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comparison of the performances of Distribution State Estimation algorithms: Classical Newton approach and PSO approach</atitle><btitle>2012 IEEE Power and Energy Society General Meeting</btitle><stitle>PESGM</stitle><date>2012-07</date><risdate>2012</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1932-5517</issn><isbn>1467327271</isbn><isbn>9781467327275</isbn><eisbn>9781467327282</eisbn><eisbn>1467327298</eisbn><eisbn>9781467327299</eisbn><eisbn>146732728X</eisbn><abstract>Existing electricity distribution management systems (DMS) have been designed using operational and algorithmic procedures that are highly centralised. As more of the distribution network becomes active, accurately estimating the state of the system becomes essential and therefore DMS must include functions to achieve the required near to real-time state estimation. The objective of this paper is to evaluate and to compare the performances obtained with two different solutions developed by EDF R&D for the Distribution State Estimator (DSE) algorithm for MV networks: classical optimization resolution approach using a Newton resolution algorithm on one side and a Particle Swarm Optimization algorithm on the other side. The performances of these solutions are evaluated in terms of precisions obtained for the estimates related to the primary and secondary variables and of computation times.</abstract><pub>IEEE</pub><doi>10.1109/PESGM.2012.6344688</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-5517 |
ispartof | 2012 IEEE Power and Energy Society General Meeting, 2012, p.1-7 |
issn | 1932-5517 |
language | eng |
recordid | cdi_ieee_primary_6344688 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Distribution Management Systems Distribution State Estimation (DSE) Equations Mathematical model PSO algorithm SCADA Sensors State estimation Substations Vectors |
title | Comparison of the performances of Distribution State Estimation algorithms: Classical Newton approach and PSO approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A36%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comparison%20of%20the%20performances%20of%20Distribution%20State%20Estimation%20algorithms:%20Classical%20Newton%20approach%20and%20PSO%20approach&rft.btitle=2012%20IEEE%20Power%20and%20Energy%20Society%20General%20Meeting&rft.au=Chilard,%20O.&rft.date=2012-07&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1932-5517&rft.isbn=1467327271&rft.isbn_list=9781467327275&rft_id=info:doi/10.1109/PESGM.2012.6344688&rft_dat=%3Cieee_6IE%3E6344688%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467327282&rft.eisbn_list=1467327298&rft.eisbn_list=9781467327299&rft.eisbn_list=146732728X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6344688&rfr_iscdi=true |