Learning structural affordances through self-exploration

The goal of this paper is to develop a cognitive developmental approach for a humanoid robot so that it can provisionally discover self-affordance relations between certain arm limb movements and corresponding motor units by exploring the outcomes of its random arm movements while in a crawling posi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Erdemir, E., Wilkes, D. M., Kawamura, K., Erdemir, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 870
container_issue
container_start_page 865
container_title
container_volume
creator Erdemir, E.
Wilkes, D. M.
Kawamura, K.
Erdemir, A.
description The goal of this paper is to develop a cognitive developmental approach for a humanoid robot so that it can provisionally discover self-affordance relations between certain arm limb movements and corresponding motor units by exploring the outcomes of its random arm movements while in a crawling position. Learning of the right and the left arm affordances is based on self-exploration and a set of experience similarly to how a human baby discovers action-effect relations of own arm movements. We address the early development of self-affordances, similar to infants, which encodes the relationships between actions, objects, and the effect on the environment.
doi_str_mv 10.1109/ROMAN.2012.6343860
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6343860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6343860</ieee_id><sourcerecordid>6343860</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-fe531c88b31cd7623334ea26265568b3016a2d89c490ff9dd0adde9d3b6eb8343</originalsourceid><addsrcrecordid>eNpVUNtqwzAU826w0uUHtpf8QDIf2_HlsZTdIFth9L048XGbkSXFdmD7-wVWBtODBBIIJEJugZYA1Ny_b15XbyWjwErJBdeSnpHMKA1CKi4klXBOFmCEKIzg6uJfJtTlXyaqa5LF-EFnGAGgqgXRNdowdMM-jylMbZqC7XPr_RicHVqMeTqEcdof8oi9L_Dr2I_Bpm4cbsiVt33E7KRLsn182K6fi3rz9LJe1UVnaCo8VhxarZuZnZKMcy7QMslkVcnZpSAtc9q0wlDvjXPUOofG8UZio-exS3L3W9sh4u4Yuk8bvnenG_gPmB9M5A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Learning structural affordances through self-exploration</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Erdemir, E. ; Wilkes, D. M. ; Kawamura, K. ; Erdemir, A.</creator><creatorcontrib>Erdemir, E. ; Wilkes, D. M. ; Kawamura, K. ; Erdemir, A.</creatorcontrib><description>The goal of this paper is to develop a cognitive developmental approach for a humanoid robot so that it can provisionally discover self-affordance relations between certain arm limb movements and corresponding motor units by exploring the outcomes of its random arm movements while in a crawling position. Learning of the right and the left arm affordances is based on self-exploration and a set of experience similarly to how a human baby discovers action-effect relations of own arm movements. We address the early development of self-affordances, similar to infants, which encodes the relationships between actions, objects, and the effect on the environment.</description><identifier>ISSN: 1944-9445</identifier><identifier>ISBN: 9781467346047</identifier><identifier>ISBN: 1467346047</identifier><identifier>EISSN: 1944-9437</identifier><identifier>EISBN: 9781467346061</identifier><identifier>EISBN: 1467346063</identifier><identifier>EISBN: 9781467346054</identifier><identifier>EISBN: 1467346055</identifier><identifier>DOI: 10.1109/ROMAN.2012.6343860</identifier><language>eng</language><publisher>IEEE</publisher><subject>Correlation ; Humanoid robots ; Neurons ; Robot sensing systems ; Vectors ; Visualization</subject><ispartof>2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication, 2012, p.865-870</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6343860$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6343860$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Erdemir, E.</creatorcontrib><creatorcontrib>Wilkes, D. M.</creatorcontrib><creatorcontrib>Kawamura, K.</creatorcontrib><creatorcontrib>Erdemir, A.</creatorcontrib><title>Learning structural affordances through self-exploration</title><title>2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication</title><addtitle>ROMAN</addtitle><description>The goal of this paper is to develop a cognitive developmental approach for a humanoid robot so that it can provisionally discover self-affordance relations between certain arm limb movements and corresponding motor units by exploring the outcomes of its random arm movements while in a crawling position. Learning of the right and the left arm affordances is based on self-exploration and a set of experience similarly to how a human baby discovers action-effect relations of own arm movements. We address the early development of self-affordances, similar to infants, which encodes the relationships between actions, objects, and the effect on the environment.</description><subject>Correlation</subject><subject>Humanoid robots</subject><subject>Neurons</subject><subject>Robot sensing systems</subject><subject>Vectors</subject><subject>Visualization</subject><issn>1944-9445</issn><issn>1944-9437</issn><isbn>9781467346047</isbn><isbn>1467346047</isbn><isbn>9781467346061</isbn><isbn>1467346063</isbn><isbn>9781467346054</isbn><isbn>1467346055</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUNtqwzAU826w0uUHtpf8QDIf2_HlsZTdIFth9L048XGbkSXFdmD7-wVWBtODBBIIJEJugZYA1Ny_b15XbyWjwErJBdeSnpHMKA1CKi4klXBOFmCEKIzg6uJfJtTlXyaqa5LF-EFnGAGgqgXRNdowdMM-jylMbZqC7XPr_RicHVqMeTqEcdof8oi9L_Dr2I_Bpm4cbsiVt33E7KRLsn182K6fi3rz9LJe1UVnaCo8VhxarZuZnZKMcy7QMslkVcnZpSAtc9q0wlDvjXPUOofG8UZio-exS3L3W9sh4u4Yuk8bvnenG_gPmB9M5A</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Erdemir, E.</creator><creator>Wilkes, D. M.</creator><creator>Kawamura, K.</creator><creator>Erdemir, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>Learning structural affordances through self-exploration</title><author>Erdemir, E. ; Wilkes, D. M. ; Kawamura, K. ; Erdemir, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-fe531c88b31cd7623334ea26265568b3016a2d89c490ff9dd0adde9d3b6eb8343</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Correlation</topic><topic>Humanoid robots</topic><topic>Neurons</topic><topic>Robot sensing systems</topic><topic>Vectors</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Erdemir, E.</creatorcontrib><creatorcontrib>Wilkes, D. M.</creatorcontrib><creatorcontrib>Kawamura, K.</creatorcontrib><creatorcontrib>Erdemir, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Erdemir, E.</au><au>Wilkes, D. M.</au><au>Kawamura, K.</au><au>Erdemir, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Learning structural affordances through self-exploration</atitle><btitle>2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication</btitle><stitle>ROMAN</stitle><date>2012-09</date><risdate>2012</risdate><spage>865</spage><epage>870</epage><pages>865-870</pages><issn>1944-9445</issn><eissn>1944-9437</eissn><isbn>9781467346047</isbn><isbn>1467346047</isbn><eisbn>9781467346061</eisbn><eisbn>1467346063</eisbn><eisbn>9781467346054</eisbn><eisbn>1467346055</eisbn><abstract>The goal of this paper is to develop a cognitive developmental approach for a humanoid robot so that it can provisionally discover self-affordance relations between certain arm limb movements and corresponding motor units by exploring the outcomes of its random arm movements while in a crawling position. Learning of the right and the left arm affordances is based on self-exploration and a set of experience similarly to how a human baby discovers action-effect relations of own arm movements. We address the early development of self-affordances, similar to infants, which encodes the relationships between actions, objects, and the effect on the environment.</abstract><pub>IEEE</pub><doi>10.1109/ROMAN.2012.6343860</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1944-9445
ispartof 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication, 2012, p.865-870
issn 1944-9445
1944-9437
language eng
recordid cdi_ieee_primary_6343860
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Correlation
Humanoid robots
Neurons
Robot sensing systems
Vectors
Visualization
title Learning structural affordances through self-exploration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A53%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Learning%20structural%20affordances%20through%20self-exploration&rft.btitle=2012%20IEEE%20RO-MAN:%20The%2021st%20IEEE%20International%20Symposium%20on%20Robot%20and%20Human%20Interactive%20Communication&rft.au=Erdemir,%20E.&rft.date=2012-09&rft.spage=865&rft.epage=870&rft.pages=865-870&rft.issn=1944-9445&rft.eissn=1944-9437&rft.isbn=9781467346047&rft.isbn_list=1467346047&rft_id=info:doi/10.1109/ROMAN.2012.6343860&rft_dat=%3Cieee_6IE%3E6343860%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467346061&rft.eisbn_list=1467346063&rft.eisbn_list=9781467346054&rft.eisbn_list=1467346055&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6343860&rfr_iscdi=true