Sheet-Type Flexible Organic Active Matrix Amplifier System Using Pseudo-CMOS Circuits With Floating-Gate Structure
We successfully fabricated a large-area flexible strain-sensing system based on a 2-D array of organic self-bias-feedback amplifier with a signal gain of 400. The amplifier system consists of three layers: a self-assembled monolayer (SAM) capacitor matrix, a 2-D array of organic pseudo-CMOS inverter...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2012-12, Vol.59 (12), p.3434-3441 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3441 |
---|---|
container_issue | 12 |
container_start_page | 3434 |
container_title | IEEE transactions on electron devices |
container_volume | 59 |
creator | Yokota, T. Sekitani, T. Tokuhara, T. Take, N. Zschieschang, U. Klauk, H. Takimiya, K. Tsung-Ching Huang Takamiya, M. Sakurai, T. Someya, T. |
description | We successfully fabricated a large-area flexible strain-sensing system based on a 2-D array of organic self-bias-feedback amplifier with a signal gain of 400. The amplifier system consists of three layers: a self-assembled monolayer (SAM) capacitor matrix, a 2-D array of organic pseudo-CMOS inverters with a floating-gate structure using SAM gate dielectric, and an active matrix of organic thin-film transistors. The amplifier sheet comprises 8 × 8 amplifier cells, with an effective size of 7 × 7 cm 2 . The organic transistors exhibit a mobility of 1.7 cm 2 /V·s in the saturation regime at an operation voltage of 2 V. A strain sensor is made of a polymeric piezoelectric [polyvinylidene difluoride (PVDF)] sheet. When a cell of the PVDF sheet is touched (that is, when mechanical pressure is applied), a small signal is generated by intermolecular polarization in the PVDF. These signals are amplified by the organic amplifier circuits from 10 to 150 mV. |
doi_str_mv | 10.1109/TED.2012.2220853 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_ieee_primary_6343231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6343231</ieee_id><sourcerecordid>26690949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-1e7d620124bdf91e7171d2f11b84380810281295fe54c08a4a4e12728ccfca0b3</originalsourceid><addsrcrecordid>eNo9kM1rwkAQxZfSQq3tvdDLXnqM3a8ku0dJqy0oFqL0GDabiW6JGnY3Rf_7RhRPw2N-7w3zEHqmZEQpUW_Lj_cRI5SNGGNExvwGDWgcp5FKRHKLBoRQGSku-T168P63l4kQbIBcvgEI0fLYAp40cLBlA3jh1npnDR6bYP8Az3Vw9oDH27axtQWH86MPsMUrb3dr_O2hq_ZRNl_kOLPOdDZ4_GPDps_b69Aj0VQHwHlwnQmdg0d0V-vGw9NlDtFq8rHMPqPZYvqVjWeRYYqHiEJaJaePRFnVqlc0pRWrKS2l4JJISpikTMU1xMIQqYUWQFnKpDG10aTkQ0TOucbtvXdQF62zW-2OBSXFqbOi76w4XSgunfWW17Ol1d7opnZ6Z6y_-liSKKKE6rmXM2cB4LpOuOCMU_4PITF06A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sheet-Type Flexible Organic Active Matrix Amplifier System Using Pseudo-CMOS Circuits With Floating-Gate Structure</title><source>IEEE Electronic Library (IEL)</source><creator>Yokota, T. ; Sekitani, T. ; Tokuhara, T. ; Take, N. ; Zschieschang, U. ; Klauk, H. ; Takimiya, K. ; Tsung-Ching Huang ; Takamiya, M. ; Sakurai, T. ; Someya, T.</creator><creatorcontrib>Yokota, T. ; Sekitani, T. ; Tokuhara, T. ; Take, N. ; Zschieschang, U. ; Klauk, H. ; Takimiya, K. ; Tsung-Ching Huang ; Takamiya, M. ; Sakurai, T. ; Someya, T.</creatorcontrib><description>We successfully fabricated a large-area flexible strain-sensing system based on a 2-D array of organic self-bias-feedback amplifier with a signal gain of 400. The amplifier system consists of three layers: a self-assembled monolayer (SAM) capacitor matrix, a 2-D array of organic pseudo-CMOS inverters with a floating-gate structure using SAM gate dielectric, and an active matrix of organic thin-film transistors. The amplifier sheet comprises 8 × 8 amplifier cells, with an effective size of 7 × 7 cm 2 . The organic transistors exhibit a mobility of 1.7 cm 2 /V·s in the saturation regime at an operation voltage of 2 V. A strain sensor is made of a polymeric piezoelectric [polyvinylidene difluoride (PVDF)] sheet. When a cell of the PVDF sheet is touched (that is, when mechanical pressure is applied), a small signal is generated by intermolecular polarization in the PVDF. These signals are amplified by the organic amplifier circuits from 10 to 150 mV.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2012.2220853</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Active matrix organic light emitting diodes ; Amplifiers ; Applied sciences ; Circuit properties ; Design. Technologies. Operation analysis. Testing ; Dielectric, amorphous and glass solid devices ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Exact sciences and technology ; Flexible electronics ; Integrated circuits ; Inverters ; large-area sensor ; Logic gates ; Programming ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Switches ; thin-film transistors (TFTs) ; Transistors ; Voltage control</subject><ispartof>IEEE transactions on electron devices, 2012-12, Vol.59 (12), p.3434-3441</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-1e7d620124bdf91e7171d2f11b84380810281295fe54c08a4a4e12728ccfca0b3</citedby><cites>FETCH-LOGICAL-c293t-1e7d620124bdf91e7171d2f11b84380810281295fe54c08a4a4e12728ccfca0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6343231$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6343231$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26690949$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yokota, T.</creatorcontrib><creatorcontrib>Sekitani, T.</creatorcontrib><creatorcontrib>Tokuhara, T.</creatorcontrib><creatorcontrib>Take, N.</creatorcontrib><creatorcontrib>Zschieschang, U.</creatorcontrib><creatorcontrib>Klauk, H.</creatorcontrib><creatorcontrib>Takimiya, K.</creatorcontrib><creatorcontrib>Tsung-Ching Huang</creatorcontrib><creatorcontrib>Takamiya, M.</creatorcontrib><creatorcontrib>Sakurai, T.</creatorcontrib><creatorcontrib>Someya, T.</creatorcontrib><title>Sheet-Type Flexible Organic Active Matrix Amplifier System Using Pseudo-CMOS Circuits With Floating-Gate Structure</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>We successfully fabricated a large-area flexible strain-sensing system based on a 2-D array of organic self-bias-feedback amplifier with a signal gain of 400. The amplifier system consists of three layers: a self-assembled monolayer (SAM) capacitor matrix, a 2-D array of organic pseudo-CMOS inverters with a floating-gate structure using SAM gate dielectric, and an active matrix of organic thin-film transistors. The amplifier sheet comprises 8 × 8 amplifier cells, with an effective size of 7 × 7 cm 2 . The organic transistors exhibit a mobility of 1.7 cm 2 /V·s in the saturation regime at an operation voltage of 2 V. A strain sensor is made of a polymeric piezoelectric [polyvinylidene difluoride (PVDF)] sheet. When a cell of the PVDF sheet is touched (that is, when mechanical pressure is applied), a small signal is generated by intermolecular polarization in the PVDF. These signals are amplified by the organic amplifier circuits from 10 to 150 mV.</description><subject>Active matrix organic light emitting diodes</subject><subject>Amplifiers</subject><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Dielectric, amorphous and glass solid devices</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Flexible electronics</subject><subject>Integrated circuits</subject><subject>Inverters</subject><subject>large-area sensor</subject><subject>Logic gates</subject><subject>Programming</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Switches</subject><subject>thin-film transistors (TFTs)</subject><subject>Transistors</subject><subject>Voltage control</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1rwkAQxZfSQq3tvdDLXnqM3a8ku0dJqy0oFqL0GDabiW6JGnY3Rf_7RhRPw2N-7w3zEHqmZEQpUW_Lj_cRI5SNGGNExvwGDWgcp5FKRHKLBoRQGSku-T168P63l4kQbIBcvgEI0fLYAp40cLBlA3jh1npnDR6bYP8Az3Vw9oDH27axtQWH86MPsMUrb3dr_O2hq_ZRNl_kOLPOdDZ4_GPDps_b69Aj0VQHwHlwnQmdg0d0V-vGw9NlDtFq8rHMPqPZYvqVjWeRYYqHiEJaJaePRFnVqlc0pRWrKS2l4JJISpikTMU1xMIQqYUWQFnKpDG10aTkQ0TOucbtvXdQF62zW-2OBSXFqbOi76w4XSgunfWW17Ol1d7opnZ6Z6y_-liSKKKE6rmXM2cB4LpOuOCMU_4PITF06A</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Yokota, T.</creator><creator>Sekitani, T.</creator><creator>Tokuhara, T.</creator><creator>Take, N.</creator><creator>Zschieschang, U.</creator><creator>Klauk, H.</creator><creator>Takimiya, K.</creator><creator>Tsung-Ching Huang</creator><creator>Takamiya, M.</creator><creator>Sakurai, T.</creator><creator>Someya, T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121201</creationdate><title>Sheet-Type Flexible Organic Active Matrix Amplifier System Using Pseudo-CMOS Circuits With Floating-Gate Structure</title><author>Yokota, T. ; Sekitani, T. ; Tokuhara, T. ; Take, N. ; Zschieschang, U. ; Klauk, H. ; Takimiya, K. ; Tsung-Ching Huang ; Takamiya, M. ; Sakurai, T. ; Someya, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-1e7d620124bdf91e7171d2f11b84380810281295fe54c08a4a4e12728ccfca0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Active matrix organic light emitting diodes</topic><topic>Amplifiers</topic><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Dielectric, amorphous and glass solid devices</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Flexible electronics</topic><topic>Integrated circuits</topic><topic>Inverters</topic><topic>large-area sensor</topic><topic>Logic gates</topic><topic>Programming</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Switches</topic><topic>thin-film transistors (TFTs)</topic><topic>Transistors</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yokota, T.</creatorcontrib><creatorcontrib>Sekitani, T.</creatorcontrib><creatorcontrib>Tokuhara, T.</creatorcontrib><creatorcontrib>Take, N.</creatorcontrib><creatorcontrib>Zschieschang, U.</creatorcontrib><creatorcontrib>Klauk, H.</creatorcontrib><creatorcontrib>Takimiya, K.</creatorcontrib><creatorcontrib>Tsung-Ching Huang</creatorcontrib><creatorcontrib>Takamiya, M.</creatorcontrib><creatorcontrib>Sakurai, T.</creatorcontrib><creatorcontrib>Someya, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yokota, T.</au><au>Sekitani, T.</au><au>Tokuhara, T.</au><au>Take, N.</au><au>Zschieschang, U.</au><au>Klauk, H.</au><au>Takimiya, K.</au><au>Tsung-Ching Huang</au><au>Takamiya, M.</au><au>Sakurai, T.</au><au>Someya, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sheet-Type Flexible Organic Active Matrix Amplifier System Using Pseudo-CMOS Circuits With Floating-Gate Structure</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>59</volume><issue>12</issue><spage>3434</spage><epage>3441</epage><pages>3434-3441</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>We successfully fabricated a large-area flexible strain-sensing system based on a 2-D array of organic self-bias-feedback amplifier with a signal gain of 400. The amplifier system consists of three layers: a self-assembled monolayer (SAM) capacitor matrix, a 2-D array of organic pseudo-CMOS inverters with a floating-gate structure using SAM gate dielectric, and an active matrix of organic thin-film transistors. The amplifier sheet comprises 8 × 8 amplifier cells, with an effective size of 7 × 7 cm 2 . The organic transistors exhibit a mobility of 1.7 cm 2 /V·s in the saturation regime at an operation voltage of 2 V. A strain sensor is made of a polymeric piezoelectric [polyvinylidene difluoride (PVDF)] sheet. When a cell of the PVDF sheet is touched (that is, when mechanical pressure is applied), a small signal is generated by intermolecular polarization in the PVDF. These signals are amplified by the organic amplifier circuits from 10 to 150 mV.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2012.2220853</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2012-12, Vol.59 (12), p.3434-3441 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_ieee_primary_6343231 |
source | IEEE Electronic Library (IEL) |
subjects | Active matrix organic light emitting diodes Amplifiers Applied sciences Circuit properties Design. Technologies. Operation analysis. Testing Dielectric, amorphous and glass solid devices Electric, optical and optoelectronic circuits Electronic circuits Electronic equipment and fabrication. Passive components, printed wiring boards, connectics Electronics Exact sciences and technology Flexible electronics Integrated circuits Inverters large-area sensor Logic gates Programming Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Switches thin-film transistors (TFTs) Transistors Voltage control |
title | Sheet-Type Flexible Organic Active Matrix Amplifier System Using Pseudo-CMOS Circuits With Floating-Gate Structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T16%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sheet-Type%20Flexible%20Organic%20Active%20Matrix%20Amplifier%20System%20Using%20Pseudo-CMOS%20Circuits%20With%20Floating-Gate%20Structure&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Yokota,%20T.&rft.date=2012-12-01&rft.volume=59&rft.issue=12&rft.spage=3434&rft.epage=3441&rft.pages=3434-3441&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2012.2220853&rft_dat=%3Cpascalfrancis_RIE%3E26690949%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6343231&rfr_iscdi=true |