System Identification of the EEG Transformation Due to TMS Pulses: A Novel Method for a Synchronous Brain Computer Interface
Most current brain computer interface (BCI) methods utilize feature extraction techniques based on some form of signal modeling applied to a single time series of data to identify the state of the EEG system. However, an alternative system identification process is possible, using a temporally speci...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Price, Gregory W. Togneri, Roberto |
description | Most current brain computer interface (BCI) methods utilize feature extraction techniques based on some form of signal modeling applied to a single time series of data to identify the state of the EEG system. However, an alternative system identification process is possible, using a temporally specific external stimulus, by building a mathematical model based on observed input and output time series. Transcranial Magnetic Stimulation (TMS) is a more recent field of EEG research that provides one such stimulus. In this paper, we present a new process for identifying the EEG state wherein system identification theory is implemented to model the transformation of the EEG due to a time specific TMS pulse. An AutoRegressive Moving Average with eXogenous input (ARMAX) structure was classified using a Support Vector Machine (SVM) algorithm. The maximum classification accuracy of 88% for a single subject, used a quadratic kernel and alpha frequency, but we also report results from different implementations. The information transfer rate, however, is only 5.1bits/min. This study is the first known to use system identification, and in particular the system identification of the brain's response to a TMS pulse as an index of intention. It provides proof of concept as well as an initial implementation and evaluation of this form of BCI. |
doi_str_mv | 10.1109/SCET.2012.6342049 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6342049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6342049</ieee_id><sourcerecordid>6342049</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-9697134d553a1d4a0a99e43eabbf7c77bb9a5eecbb27a085b9856c544c439693</originalsourceid><addsrcrecordid>eNo1UF1LwzAUjYigzv0A8eX-gc2kSZrGt1nrHGwqtO8jaW9ZZG1GmwqD_XgLm_fhHA7n4-ES8sjonDGqn_M0K-YRZdE85iKiQl-ReyakUkzHQl-TqVbJv5b8lkz7_oeOl7CE0-iOnPJjH7CBVYVtcLUrTXC-BV9D2CFk2RKKzrR97bvm7LwNCMFDscnhe9j32L_AAj79L-5hg2HnKxizYCA_tuWu860fenjtjGsh9c1hCNjBqh2xNiU-kJvajBvTC09I_p4V6cds_bVcpYv1zGkaZjrWinFRSckNq4ShRmsUHI21tSqVslYbiVhaGylDE2l1IuNSClEKPnb5hDydVx0ibg-da0x33F7exf8ANHBe2w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>System Identification of the EEG Transformation Due to TMS Pulses: A Novel Method for a Synchronous Brain Computer Interface</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Price, Gregory W. ; Togneri, Roberto</creator><creatorcontrib>Price, Gregory W. ; Togneri, Roberto</creatorcontrib><description>Most current brain computer interface (BCI) methods utilize feature extraction techniques based on some form of signal modeling applied to a single time series of data to identify the state of the EEG system. However, an alternative system identification process is possible, using a temporally specific external stimulus, by building a mathematical model based on observed input and output time series. Transcranial Magnetic Stimulation (TMS) is a more recent field of EEG research that provides one such stimulus. In this paper, we present a new process for identifying the EEG state wherein system identification theory is implemented to model the transformation of the EEG due to a time specific TMS pulse. An AutoRegressive Moving Average with eXogenous input (ARMAX) structure was classified using a Support Vector Machine (SVM) algorithm. The maximum classification accuracy of 88% for a single subject, used a quadratic kernel and alpha frequency, but we also report results from different implementations. The information transfer rate, however, is only 5.1bits/min. This study is the first known to use system identification, and in particular the system identification of the brain's response to a TMS pulse as an index of intention. It provides proof of concept as well as an initial implementation and evaluation of this form of BCI.</description><identifier>ISBN: 9781457719653</identifier><identifier>ISBN: 1457719657</identifier><identifier>EISBN: 1457719649</identifier><identifier>EISBN: 9781457719646</identifier><identifier>EISBN: 1457719630</identifier><identifier>EISBN: 9781457719639</identifier><identifier>DOI: 10.1109/SCET.2012.6342049</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Autoregressive processes ; Brain computer interfaces ; Brain modeling ; Electroencephalography ; Feature extraction ; System identification</subject><ispartof>2012 Spring Congress on Engineering and Technology, 2012, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6342049$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6342049$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Price, Gregory W.</creatorcontrib><creatorcontrib>Togneri, Roberto</creatorcontrib><title>System Identification of the EEG Transformation Due to TMS Pulses: A Novel Method for a Synchronous Brain Computer Interface</title><title>2012 Spring Congress on Engineering and Technology</title><addtitle>SCET</addtitle><description>Most current brain computer interface (BCI) methods utilize feature extraction techniques based on some form of signal modeling applied to a single time series of data to identify the state of the EEG system. However, an alternative system identification process is possible, using a temporally specific external stimulus, by building a mathematical model based on observed input and output time series. Transcranial Magnetic Stimulation (TMS) is a more recent field of EEG research that provides one such stimulus. In this paper, we present a new process for identifying the EEG state wherein system identification theory is implemented to model the transformation of the EEG due to a time specific TMS pulse. An AutoRegressive Moving Average with eXogenous input (ARMAX) structure was classified using a Support Vector Machine (SVM) algorithm. The maximum classification accuracy of 88% for a single subject, used a quadratic kernel and alpha frequency, but we also report results from different implementations. The information transfer rate, however, is only 5.1bits/min. This study is the first known to use system identification, and in particular the system identification of the brain's response to a TMS pulse as an index of intention. It provides proof of concept as well as an initial implementation and evaluation of this form of BCI.</description><subject>Accuracy</subject><subject>Autoregressive processes</subject><subject>Brain computer interfaces</subject><subject>Brain modeling</subject><subject>Electroencephalography</subject><subject>Feature extraction</subject><subject>System identification</subject><isbn>9781457719653</isbn><isbn>1457719657</isbn><isbn>1457719649</isbn><isbn>9781457719646</isbn><isbn>1457719630</isbn><isbn>9781457719639</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UF1LwzAUjYigzv0A8eX-gc2kSZrGt1nrHGwqtO8jaW9ZZG1GmwqD_XgLm_fhHA7n4-ES8sjonDGqn_M0K-YRZdE85iKiQl-ReyakUkzHQl-TqVbJv5b8lkz7_oeOl7CE0-iOnPJjH7CBVYVtcLUrTXC-BV9D2CFk2RKKzrR97bvm7LwNCMFDscnhe9j32L_AAj79L-5hg2HnKxizYCA_tuWu860fenjtjGsh9c1hCNjBqh2xNiU-kJvajBvTC09I_p4V6cds_bVcpYv1zGkaZjrWinFRSckNq4ShRmsUHI21tSqVslYbiVhaGylDE2l1IuNSClEKPnb5hDydVx0ibg-da0x33F7exf8ANHBe2w</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Price, Gregory W.</creator><creator>Togneri, Roberto</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201205</creationdate><title>System Identification of the EEG Transformation Due to TMS Pulses: A Novel Method for a Synchronous Brain Computer Interface</title><author>Price, Gregory W. ; Togneri, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-9697134d553a1d4a0a99e43eabbf7c77bb9a5eecbb27a085b9856c544c439693</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Autoregressive processes</topic><topic>Brain computer interfaces</topic><topic>Brain modeling</topic><topic>Electroencephalography</topic><topic>Feature extraction</topic><topic>System identification</topic><toplevel>online_resources</toplevel><creatorcontrib>Price, Gregory W.</creatorcontrib><creatorcontrib>Togneri, Roberto</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Price, Gregory W.</au><au>Togneri, Roberto</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>System Identification of the EEG Transformation Due to TMS Pulses: A Novel Method for a Synchronous Brain Computer Interface</atitle><btitle>2012 Spring Congress on Engineering and Technology</btitle><stitle>SCET</stitle><date>2012-05</date><risdate>2012</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>9781457719653</isbn><isbn>1457719657</isbn><eisbn>1457719649</eisbn><eisbn>9781457719646</eisbn><eisbn>1457719630</eisbn><eisbn>9781457719639</eisbn><abstract>Most current brain computer interface (BCI) methods utilize feature extraction techniques based on some form of signal modeling applied to a single time series of data to identify the state of the EEG system. However, an alternative system identification process is possible, using a temporally specific external stimulus, by building a mathematical model based on observed input and output time series. Transcranial Magnetic Stimulation (TMS) is a more recent field of EEG research that provides one such stimulus. In this paper, we present a new process for identifying the EEG state wherein system identification theory is implemented to model the transformation of the EEG due to a time specific TMS pulse. An AutoRegressive Moving Average with eXogenous input (ARMAX) structure was classified using a Support Vector Machine (SVM) algorithm. The maximum classification accuracy of 88% for a single subject, used a quadratic kernel and alpha frequency, but we also report results from different implementations. The information transfer rate, however, is only 5.1bits/min. This study is the first known to use system identification, and in particular the system identification of the brain's response to a TMS pulse as an index of intention. It provides proof of concept as well as an initial implementation and evaluation of this form of BCI.</abstract><pub>IEEE</pub><doi>10.1109/SCET.2012.6342049</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781457719653 |
ispartof | 2012 Spring Congress on Engineering and Technology, 2012, p.1-5 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6342049 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Autoregressive processes Brain computer interfaces Brain modeling Electroencephalography Feature extraction System identification |
title | System Identification of the EEG Transformation Due to TMS Pulses: A Novel Method for a Synchronous Brain Computer Interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A42%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=System%20Identification%20of%20the%20EEG%20Transformation%20Due%20to%20TMS%20Pulses:%20A%20Novel%20Method%20for%20a%20Synchronous%20Brain%20Computer%20Interface&rft.btitle=2012%20Spring%20Congress%20on%20Engineering%20and%20Technology&rft.au=Price,%20Gregory%20W.&rft.date=2012-05&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=9781457719653&rft.isbn_list=1457719657&rft_id=info:doi/10.1109/SCET.2012.6342049&rft_dat=%3Cieee_6IE%3E6342049%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457719649&rft.eisbn_list=9781457719646&rft.eisbn_list=1457719630&rft.eisbn_list=9781457719639&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6342049&rfr_iscdi=true |