System Identification of the EEG Transformation Due to TMS Pulses: A Novel Method for a Synchronous Brain Computer Interface

Most current brain computer interface (BCI) methods utilize feature extraction techniques based on some form of signal modeling applied to a single time series of data to identify the state of the EEG system. However, an alternative system identification process is possible, using a temporally speci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Price, Gregory W., Togneri, Roberto
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Price, Gregory W.
Togneri, Roberto
description Most current brain computer interface (BCI) methods utilize feature extraction techniques based on some form of signal modeling applied to a single time series of data to identify the state of the EEG system. However, an alternative system identification process is possible, using a temporally specific external stimulus, by building a mathematical model based on observed input and output time series. Transcranial Magnetic Stimulation (TMS) is a more recent field of EEG research that provides one such stimulus. In this paper, we present a new process for identifying the EEG state wherein system identification theory is implemented to model the transformation of the EEG due to a time specific TMS pulse. An AutoRegressive Moving Average with eXogenous input (ARMAX) structure was classified using a Support Vector Machine (SVM) algorithm. The maximum classification accuracy of 88% for a single subject, used a quadratic kernel and alpha frequency, but we also report results from different implementations. The information transfer rate, however, is only 5.1bits/min. This study is the first known to use system identification, and in particular the system identification of the brain's response to a TMS pulse as an index of intention. It provides proof of concept as well as an initial implementation and evaluation of this form of BCI.
doi_str_mv 10.1109/SCET.2012.6342049
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6342049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6342049</ieee_id><sourcerecordid>6342049</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-9697134d553a1d4a0a99e43eabbf7c77bb9a5eecbb27a085b9856c544c439693</originalsourceid><addsrcrecordid>eNo1UF1LwzAUjYigzv0A8eX-gc2kSZrGt1nrHGwqtO8jaW9ZZG1GmwqD_XgLm_fhHA7n4-ES8sjonDGqn_M0K-YRZdE85iKiQl-ReyakUkzHQl-TqVbJv5b8lkz7_oeOl7CE0-iOnPJjH7CBVYVtcLUrTXC-BV9D2CFk2RKKzrR97bvm7LwNCMFDscnhe9j32L_AAj79L-5hg2HnKxizYCA_tuWu860fenjtjGsh9c1hCNjBqh2xNiU-kJvajBvTC09I_p4V6cds_bVcpYv1zGkaZjrWinFRSckNq4ShRmsUHI21tSqVslYbiVhaGylDE2l1IuNSClEKPnb5hDydVx0ibg-da0x33F7exf8ANHBe2w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>System Identification of the EEG Transformation Due to TMS Pulses: A Novel Method for a Synchronous Brain Computer Interface</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Price, Gregory W. ; Togneri, Roberto</creator><creatorcontrib>Price, Gregory W. ; Togneri, Roberto</creatorcontrib><description>Most current brain computer interface (BCI) methods utilize feature extraction techniques based on some form of signal modeling applied to a single time series of data to identify the state of the EEG system. However, an alternative system identification process is possible, using a temporally specific external stimulus, by building a mathematical model based on observed input and output time series. Transcranial Magnetic Stimulation (TMS) is a more recent field of EEG research that provides one such stimulus. In this paper, we present a new process for identifying the EEG state wherein system identification theory is implemented to model the transformation of the EEG due to a time specific TMS pulse. An AutoRegressive Moving Average with eXogenous input (ARMAX) structure was classified using a Support Vector Machine (SVM) algorithm. The maximum classification accuracy of 88% for a single subject, used a quadratic kernel and alpha frequency, but we also report results from different implementations. The information transfer rate, however, is only 5.1bits/min. This study is the first known to use system identification, and in particular the system identification of the brain's response to a TMS pulse as an index of intention. It provides proof of concept as well as an initial implementation and evaluation of this form of BCI.</description><identifier>ISBN: 9781457719653</identifier><identifier>ISBN: 1457719657</identifier><identifier>EISBN: 1457719649</identifier><identifier>EISBN: 9781457719646</identifier><identifier>EISBN: 1457719630</identifier><identifier>EISBN: 9781457719639</identifier><identifier>DOI: 10.1109/SCET.2012.6342049</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Autoregressive processes ; Brain computer interfaces ; Brain modeling ; Electroencephalography ; Feature extraction ; System identification</subject><ispartof>2012 Spring Congress on Engineering and Technology, 2012, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6342049$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6342049$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Price, Gregory W.</creatorcontrib><creatorcontrib>Togneri, Roberto</creatorcontrib><title>System Identification of the EEG Transformation Due to TMS Pulses: A Novel Method for a Synchronous Brain Computer Interface</title><title>2012 Spring Congress on Engineering and Technology</title><addtitle>SCET</addtitle><description>Most current brain computer interface (BCI) methods utilize feature extraction techniques based on some form of signal modeling applied to a single time series of data to identify the state of the EEG system. However, an alternative system identification process is possible, using a temporally specific external stimulus, by building a mathematical model based on observed input and output time series. Transcranial Magnetic Stimulation (TMS) is a more recent field of EEG research that provides one such stimulus. In this paper, we present a new process for identifying the EEG state wherein system identification theory is implemented to model the transformation of the EEG due to a time specific TMS pulse. An AutoRegressive Moving Average with eXogenous input (ARMAX) structure was classified using a Support Vector Machine (SVM) algorithm. The maximum classification accuracy of 88% for a single subject, used a quadratic kernel and alpha frequency, but we also report results from different implementations. The information transfer rate, however, is only 5.1bits/min. This study is the first known to use system identification, and in particular the system identification of the brain's response to a TMS pulse as an index of intention. It provides proof of concept as well as an initial implementation and evaluation of this form of BCI.</description><subject>Accuracy</subject><subject>Autoregressive processes</subject><subject>Brain computer interfaces</subject><subject>Brain modeling</subject><subject>Electroencephalography</subject><subject>Feature extraction</subject><subject>System identification</subject><isbn>9781457719653</isbn><isbn>1457719657</isbn><isbn>1457719649</isbn><isbn>9781457719646</isbn><isbn>1457719630</isbn><isbn>9781457719639</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UF1LwzAUjYigzv0A8eX-gc2kSZrGt1nrHGwqtO8jaW9ZZG1GmwqD_XgLm_fhHA7n4-ES8sjonDGqn_M0K-YRZdE85iKiQl-ReyakUkzHQl-TqVbJv5b8lkz7_oeOl7CE0-iOnPJjH7CBVYVtcLUrTXC-BV9D2CFk2RKKzrR97bvm7LwNCMFDscnhe9j32L_AAj79L-5hg2HnKxizYCA_tuWu860fenjtjGsh9c1hCNjBqh2xNiU-kJvajBvTC09I_p4V6cds_bVcpYv1zGkaZjrWinFRSckNq4ShRmsUHI21tSqVslYbiVhaGylDE2l1IuNSClEKPnb5hDydVx0ibg-da0x33F7exf8ANHBe2w</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Price, Gregory W.</creator><creator>Togneri, Roberto</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201205</creationdate><title>System Identification of the EEG Transformation Due to TMS Pulses: A Novel Method for a Synchronous Brain Computer Interface</title><author>Price, Gregory W. ; Togneri, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-9697134d553a1d4a0a99e43eabbf7c77bb9a5eecbb27a085b9856c544c439693</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Autoregressive processes</topic><topic>Brain computer interfaces</topic><topic>Brain modeling</topic><topic>Electroencephalography</topic><topic>Feature extraction</topic><topic>System identification</topic><toplevel>online_resources</toplevel><creatorcontrib>Price, Gregory W.</creatorcontrib><creatorcontrib>Togneri, Roberto</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Price, Gregory W.</au><au>Togneri, Roberto</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>System Identification of the EEG Transformation Due to TMS Pulses: A Novel Method for a Synchronous Brain Computer Interface</atitle><btitle>2012 Spring Congress on Engineering and Technology</btitle><stitle>SCET</stitle><date>2012-05</date><risdate>2012</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>9781457719653</isbn><isbn>1457719657</isbn><eisbn>1457719649</eisbn><eisbn>9781457719646</eisbn><eisbn>1457719630</eisbn><eisbn>9781457719639</eisbn><abstract>Most current brain computer interface (BCI) methods utilize feature extraction techniques based on some form of signal modeling applied to a single time series of data to identify the state of the EEG system. However, an alternative system identification process is possible, using a temporally specific external stimulus, by building a mathematical model based on observed input and output time series. Transcranial Magnetic Stimulation (TMS) is a more recent field of EEG research that provides one such stimulus. In this paper, we present a new process for identifying the EEG state wherein system identification theory is implemented to model the transformation of the EEG due to a time specific TMS pulse. An AutoRegressive Moving Average with eXogenous input (ARMAX) structure was classified using a Support Vector Machine (SVM) algorithm. The maximum classification accuracy of 88% for a single subject, used a quadratic kernel and alpha frequency, but we also report results from different implementations. The information transfer rate, however, is only 5.1bits/min. This study is the first known to use system identification, and in particular the system identification of the brain's response to a TMS pulse as an index of intention. It provides proof of concept as well as an initial implementation and evaluation of this form of BCI.</abstract><pub>IEEE</pub><doi>10.1109/SCET.2012.6342049</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781457719653
ispartof 2012 Spring Congress on Engineering and Technology, 2012, p.1-5
issn
language eng
recordid cdi_ieee_primary_6342049
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Autoregressive processes
Brain computer interfaces
Brain modeling
Electroencephalography
Feature extraction
System identification
title System Identification of the EEG Transformation Due to TMS Pulses: A Novel Method for a Synchronous Brain Computer Interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A42%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=System%20Identification%20of%20the%20EEG%20Transformation%20Due%20to%20TMS%20Pulses:%20A%20Novel%20Method%20for%20a%20Synchronous%20Brain%20Computer%20Interface&rft.btitle=2012%20Spring%20Congress%20on%20Engineering%20and%20Technology&rft.au=Price,%20Gregory%20W.&rft.date=2012-05&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=9781457719653&rft.isbn_list=1457719657&rft_id=info:doi/10.1109/SCET.2012.6342049&rft_dat=%3Cieee_6IE%3E6342049%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457719649&rft.eisbn_list=9781457719646&rft.eisbn_list=1457719630&rft.eisbn_list=9781457719639&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6342049&rfr_iscdi=true