Mining Significant Places from Cell ID Trajectories: A Geo-grid Based Approach
Mining the frequently visited places of single mobile users, i.e., significant places, is crucial for supporting personalized location-based services. Most of existing works for significance place mining have a need to take advantage the GPS trajectories of users. However, it is difficult to encoura...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 293 |
---|---|
container_issue | |
container_start_page | 288 |
container_title | |
container_volume | |
creator | Tengfei Bao Huanhuan Cao Qiang Yang Enhong Chen Jilei Tian |
description | Mining the frequently visited places of single mobile users, i.e., significant places, is crucial for supporting personalized location-based services. Most of existing works for significance place mining have a need to take advantage the GPS trajectories of users. However, it is difficult to encourage mobile users to contribute GPS trajectories because of the high power consumption of GPS. In this paper, we propose a geo-grid based approach for mining significant places from cell ID trajectories. In our approach, the mined significant places are represented as sets of geo-grids which are much smaller than the coverage areas of cell-sites. To be specific, we firstly extract the stay areas where the mobile user used to stay and map them to many geo-grids. Then we mine significant places from the geo-grids by considering their significance. We evaluate the approach on real word data sets and the experimental results clearly show that the proposed approach outperforms two baselines. |
doi_str_mv | 10.1109/MDM.2012.36 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6341404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6341404</ieee_id><sourcerecordid>6341404</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-464ead12bdb04890e13a0fcb8bb080a9758e8285e4eedd49cad1b639a571aa6c3</originalsourceid><addsrcrecordid>eNotjLtOAkEUQMdXIiCVpc38wOK98x47BEUSUBPpyezsXRyy7JJZGv9eEj3NaU4OY_cIE0Twj-v5eiIAxUSaCzYEa7xWFqW8ZAMhrS5ACnXFhqiMlWi98ddsgFpjYYTSt2zc93s44wQC4oC9r1Ob2h3_Srs21SmG9sQ_mxCp53XuDnxGTcOXc77JYU_x1OVE_ROf8gV1xS6nij-Hnio-PR5zF-L3HbupQ9PT-N8jtnl92czeitXHYjmbrork4VQooyhUKMqqBOU8EMoAdSxdWYKD4K125ITTpIiqSvl4jksjfdAWQzBRjtjD3zYR0faY0yHkn62RChUo-QuMnFAG</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Mining Significant Places from Cell ID Trajectories: A Geo-grid Based Approach</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tengfei Bao ; Huanhuan Cao ; Qiang Yang ; Enhong Chen ; Jilei Tian</creator><creatorcontrib>Tengfei Bao ; Huanhuan Cao ; Qiang Yang ; Enhong Chen ; Jilei Tian</creatorcontrib><description>Mining the frequently visited places of single mobile users, i.e., significant places, is crucial for supporting personalized location-based services. Most of existing works for significance place mining have a need to take advantage the GPS trajectories of users. However, it is difficult to encourage mobile users to contribute GPS trajectories because of the high power consumption of GPS. In this paper, we propose a geo-grid based approach for mining significant places from cell ID trajectories. In our approach, the mined significant places are represented as sets of geo-grids which are much smaller than the coverage areas of cell-sites. To be specific, we firstly extract the stay areas where the mobile user used to stay and map them to many geo-grids. Then we mine significant places from the geo-grids by considering their significance. We evaluate the approach on real word data sets and the experimental results clearly show that the proposed approach outperforms two baselines.</description><identifier>ISSN: 1551-6245</identifier><identifier>ISBN: 1467317969</identifier><identifier>ISBN: 9781467317962</identifier><identifier>EISSN: 2375-0324</identifier><identifier>EISBN: 0769547133</identifier><identifier>EISBN: 9780769547138</identifier><identifier>DOI: 10.1109/MDM.2012.36</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Communities ; Data mining ; Estimation ; Global Positioning System ; Mobile communication ; Mobile handsets ; Trajectory</subject><ispartof>2012 IEEE 13th International Conference on Mobile Data Management, 2012, p.288-293</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6341404$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6341404$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tengfei Bao</creatorcontrib><creatorcontrib>Huanhuan Cao</creatorcontrib><creatorcontrib>Qiang Yang</creatorcontrib><creatorcontrib>Enhong Chen</creatorcontrib><creatorcontrib>Jilei Tian</creatorcontrib><title>Mining Significant Places from Cell ID Trajectories: A Geo-grid Based Approach</title><title>2012 IEEE 13th International Conference on Mobile Data Management</title><addtitle>mdm</addtitle><description>Mining the frequently visited places of single mobile users, i.e., significant places, is crucial for supporting personalized location-based services. Most of existing works for significance place mining have a need to take advantage the GPS trajectories of users. However, it is difficult to encourage mobile users to contribute GPS trajectories because of the high power consumption of GPS. In this paper, we propose a geo-grid based approach for mining significant places from cell ID trajectories. In our approach, the mined significant places are represented as sets of geo-grids which are much smaller than the coverage areas of cell-sites. To be specific, we firstly extract the stay areas where the mobile user used to stay and map them to many geo-grids. Then we mine significant places from the geo-grids by considering their significance. We evaluate the approach on real word data sets and the experimental results clearly show that the proposed approach outperforms two baselines.</description><subject>Communities</subject><subject>Data mining</subject><subject>Estimation</subject><subject>Global Positioning System</subject><subject>Mobile communication</subject><subject>Mobile handsets</subject><subject>Trajectory</subject><issn>1551-6245</issn><issn>2375-0324</issn><isbn>1467317969</isbn><isbn>9781467317962</isbn><isbn>0769547133</isbn><isbn>9780769547138</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjLtOAkEUQMdXIiCVpc38wOK98x47BEUSUBPpyezsXRyy7JJZGv9eEj3NaU4OY_cIE0Twj-v5eiIAxUSaCzYEa7xWFqW8ZAMhrS5ACnXFhqiMlWi98ddsgFpjYYTSt2zc93s44wQC4oC9r1Ob2h3_Srs21SmG9sQ_mxCp53XuDnxGTcOXc77JYU_x1OVE_ROf8gV1xS6nij-Hnio-PR5zF-L3HbupQ9PT-N8jtnl92czeitXHYjmbrork4VQooyhUKMqqBOU8EMoAdSxdWYKD4K125ITTpIiqSvl4jksjfdAWQzBRjtjD3zYR0faY0yHkn62RChUo-QuMnFAG</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Tengfei Bao</creator><creator>Huanhuan Cao</creator><creator>Qiang Yang</creator><creator>Enhong Chen</creator><creator>Jilei Tian</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201207</creationdate><title>Mining Significant Places from Cell ID Trajectories: A Geo-grid Based Approach</title><author>Tengfei Bao ; Huanhuan Cao ; Qiang Yang ; Enhong Chen ; Jilei Tian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-464ead12bdb04890e13a0fcb8bb080a9758e8285e4eedd49cad1b639a571aa6c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Communities</topic><topic>Data mining</topic><topic>Estimation</topic><topic>Global Positioning System</topic><topic>Mobile communication</topic><topic>Mobile handsets</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Tengfei Bao</creatorcontrib><creatorcontrib>Huanhuan Cao</creatorcontrib><creatorcontrib>Qiang Yang</creatorcontrib><creatorcontrib>Enhong Chen</creatorcontrib><creatorcontrib>Jilei Tian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tengfei Bao</au><au>Huanhuan Cao</au><au>Qiang Yang</au><au>Enhong Chen</au><au>Jilei Tian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Mining Significant Places from Cell ID Trajectories: A Geo-grid Based Approach</atitle><btitle>2012 IEEE 13th International Conference on Mobile Data Management</btitle><stitle>mdm</stitle><date>2012-07</date><risdate>2012</risdate><spage>288</spage><epage>293</epage><pages>288-293</pages><issn>1551-6245</issn><eissn>2375-0324</eissn><isbn>1467317969</isbn><isbn>9781467317962</isbn><eisbn>0769547133</eisbn><eisbn>9780769547138</eisbn><coden>IEEPAD</coden><abstract>Mining the frequently visited places of single mobile users, i.e., significant places, is crucial for supporting personalized location-based services. Most of existing works for significance place mining have a need to take advantage the GPS trajectories of users. However, it is difficult to encourage mobile users to contribute GPS trajectories because of the high power consumption of GPS. In this paper, we propose a geo-grid based approach for mining significant places from cell ID trajectories. In our approach, the mined significant places are represented as sets of geo-grids which are much smaller than the coverage areas of cell-sites. To be specific, we firstly extract the stay areas where the mobile user used to stay and map them to many geo-grids. Then we mine significant places from the geo-grids by considering their significance. We evaluate the approach on real word data sets and the experimental results clearly show that the proposed approach outperforms two baselines.</abstract><pub>IEEE</pub><doi>10.1109/MDM.2012.36</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-6245 |
ispartof | 2012 IEEE 13th International Conference on Mobile Data Management, 2012, p.288-293 |
issn | 1551-6245 2375-0324 |
language | eng |
recordid | cdi_ieee_primary_6341404 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Communities Data mining Estimation Global Positioning System Mobile communication Mobile handsets Trajectory |
title | Mining Significant Places from Cell ID Trajectories: A Geo-grid Based Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A03%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Mining%20Significant%20Places%20from%20Cell%20ID%20Trajectories:%20A%20Geo-grid%20Based%20Approach&rft.btitle=2012%20IEEE%2013th%20International%20Conference%20on%20Mobile%20Data%20Management&rft.au=Tengfei%20Bao&rft.date=2012-07&rft.spage=288&rft.epage=293&rft.pages=288-293&rft.issn=1551-6245&rft.eissn=2375-0324&rft.isbn=1467317969&rft.isbn_list=9781467317962&rft.coden=IEEPAD&rft_id=info:doi/10.1109/MDM.2012.36&rft_dat=%3Cieee_6IE%3E6341404%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769547133&rft.eisbn_list=9780769547138&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6341404&rfr_iscdi=true |