BP-growth: Searching Strategies for Efficient Behavior Pattern Mining

User habit mining plays an important role in user understanding, which is critical for improving a wide range of personalized intelligence services. Recently, some researchers proposed to mine user behavior patterns which characterize the habits of mobile users and account for the associations betwe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xueying Li, Huanhuan Cao, Enhong Chen, Hui Xiong, Jilei Tian
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 247
container_issue
container_start_page 238
container_title
container_volume
creator Xueying Li
Huanhuan Cao
Enhong Chen
Hui Xiong
Jilei Tian
description User habit mining plays an important role in user understanding, which is critical for improving a wide range of personalized intelligence services. Recently, some researchers proposed to mine user behavior patterns which characterize the habits of mobile users and account for the associations between user interactions and context captured by mobile devices. However, the existing approaches for mining these behavior patterns are not practical in mobile environments due to limited computing resources on mobile devices. To fulfill this crucial void, we investigate optimizing strategies which can be used for improving the efficiency of behavior pattern mining in terms of computing and memory needs. Specifically, we examine typical optimizing strategies for association rule mining and study the feasibility of applying them to behavior pattern mining, since these two problems are similar in many aspects. Moreover, we develop an efficient algorithm, named BP-Growth, for behavior pattern mining by combining two promising strategies. Finally, experimental results show that BP-Growth outperforms benchmark methods with a significant margin in terms of both computing and memory cost.
doi_str_mv 10.1109/MDM.2012.14
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6341395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6341395</ieee_id><sourcerecordid>6341395</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1274-4d40dc8c91b5dcd62eccb54d871c722b7495f4e3986136cb1f60b7165256461f3</originalsourceid><addsrcrecordid>eNotjF1LwzAYRuMX2M1deelN_0Bm3uRN0njnZv2AFQfT65GmSRvRTtKi-O8t6HNz4MB5CLkEtgRg5rq6q5acAV8CHpEZ08pI1CDEMcm40JIywfGEzACVFqCNMqckAymBKo7ynCyG4Y1NKzgwgIyUqy1t0-F77G7ynbfJdbFv892Y7Ojb6Ic8HFJehhBd9P2Yr3xnv-KktnYcferzKvZTcEHOgn0f_OKfc_J6X76sH-nm-eFpfbuhEbhGig2yxhXOQC0b1yjunaslNoUGpzmvNRoZ0AtTKBDK1RAUqzUoyaVCBUHMydXfb_Te7z9T_LDpZ68EgjBS_AIDf0zA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>BP-growth: Searching Strategies for Efficient Behavior Pattern Mining</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xueying Li ; Huanhuan Cao ; Enhong Chen ; Hui Xiong ; Jilei Tian</creator><creatorcontrib>Xueying Li ; Huanhuan Cao ; Enhong Chen ; Hui Xiong ; Jilei Tian</creatorcontrib><description>User habit mining plays an important role in user understanding, which is critical for improving a wide range of personalized intelligence services. Recently, some researchers proposed to mine user behavior patterns which characterize the habits of mobile users and account for the associations between user interactions and context captured by mobile devices. However, the existing approaches for mining these behavior patterns are not practical in mobile environments due to limited computing resources on mobile devices. To fulfill this crucial void, we investigate optimizing strategies which can be used for improving the efficiency of behavior pattern mining in terms of computing and memory needs. Specifically, we examine typical optimizing strategies for association rule mining and study the feasibility of applying them to behavior pattern mining, since these two problems are similar in many aspects. Moreover, we develop an efficient algorithm, named BP-Growth, for behavior pattern mining by combining two promising strategies. Finally, experimental results show that BP-Growth outperforms benchmark methods with a significant margin in terms of both computing and memory cost.</description><identifier>ISSN: 1551-6245</identifier><identifier>ISBN: 1467317969</identifier><identifier>ISBN: 9781467317962</identifier><identifier>EISSN: 2375-0324</identifier><identifier>EISBN: 0769547133</identifier><identifier>EISBN: 9780769547138</identifier><identifier>DOI: 10.1109/MDM.2012.14</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Association rules ; behavior pattern mining ; Context ; Itemsets ; Mobile communication ; Mobile handsets ; optimizing strategies</subject><ispartof>2012 IEEE 13th International Conference on Mobile Data Management, 2012, p.238-247</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6341395$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6341395$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xueying Li</creatorcontrib><creatorcontrib>Huanhuan Cao</creatorcontrib><creatorcontrib>Enhong Chen</creatorcontrib><creatorcontrib>Hui Xiong</creatorcontrib><creatorcontrib>Jilei Tian</creatorcontrib><title>BP-growth: Searching Strategies for Efficient Behavior Pattern Mining</title><title>2012 IEEE 13th International Conference on Mobile Data Management</title><addtitle>mdm</addtitle><description>User habit mining plays an important role in user understanding, which is critical for improving a wide range of personalized intelligence services. Recently, some researchers proposed to mine user behavior patterns which characterize the habits of mobile users and account for the associations between user interactions and context captured by mobile devices. However, the existing approaches for mining these behavior patterns are not practical in mobile environments due to limited computing resources on mobile devices. To fulfill this crucial void, we investigate optimizing strategies which can be used for improving the efficiency of behavior pattern mining in terms of computing and memory needs. Specifically, we examine typical optimizing strategies for association rule mining and study the feasibility of applying them to behavior pattern mining, since these two problems are similar in many aspects. Moreover, we develop an efficient algorithm, named BP-Growth, for behavior pattern mining by combining two promising strategies. Finally, experimental results show that BP-Growth outperforms benchmark methods with a significant margin in terms of both computing and memory cost.</description><subject>Association rules</subject><subject>behavior pattern mining</subject><subject>Context</subject><subject>Itemsets</subject><subject>Mobile communication</subject><subject>Mobile handsets</subject><subject>optimizing strategies</subject><issn>1551-6245</issn><issn>2375-0324</issn><isbn>1467317969</isbn><isbn>9781467317962</isbn><isbn>0769547133</isbn><isbn>9780769547138</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjF1LwzAYRuMX2M1deelN_0Bm3uRN0njnZv2AFQfT65GmSRvRTtKi-O8t6HNz4MB5CLkEtgRg5rq6q5acAV8CHpEZ08pI1CDEMcm40JIywfGEzACVFqCNMqckAymBKo7ynCyG4Y1NKzgwgIyUqy1t0-F77G7ynbfJdbFv892Y7Ojb6Ic8HFJehhBd9P2Yr3xnv-KktnYcferzKvZTcEHOgn0f_OKfc_J6X76sH-nm-eFpfbuhEbhGig2yxhXOQC0b1yjunaslNoUGpzmvNRoZ0AtTKBDK1RAUqzUoyaVCBUHMydXfb_Te7z9T_LDpZ68EgjBS_AIDf0zA</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Xueying Li</creator><creator>Huanhuan Cao</creator><creator>Enhong Chen</creator><creator>Hui Xiong</creator><creator>Jilei Tian</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201207</creationdate><title>BP-growth: Searching Strategies for Efficient Behavior Pattern Mining</title><author>Xueying Li ; Huanhuan Cao ; Enhong Chen ; Hui Xiong ; Jilei Tian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1274-4d40dc8c91b5dcd62eccb54d871c722b7495f4e3986136cb1f60b7165256461f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Association rules</topic><topic>behavior pattern mining</topic><topic>Context</topic><topic>Itemsets</topic><topic>Mobile communication</topic><topic>Mobile handsets</topic><topic>optimizing strategies</topic><toplevel>online_resources</toplevel><creatorcontrib>Xueying Li</creatorcontrib><creatorcontrib>Huanhuan Cao</creatorcontrib><creatorcontrib>Enhong Chen</creatorcontrib><creatorcontrib>Hui Xiong</creatorcontrib><creatorcontrib>Jilei Tian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xueying Li</au><au>Huanhuan Cao</au><au>Enhong Chen</au><au>Hui Xiong</au><au>Jilei Tian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>BP-growth: Searching Strategies for Efficient Behavior Pattern Mining</atitle><btitle>2012 IEEE 13th International Conference on Mobile Data Management</btitle><stitle>mdm</stitle><date>2012-07</date><risdate>2012</risdate><spage>238</spage><epage>247</epage><pages>238-247</pages><issn>1551-6245</issn><eissn>2375-0324</eissn><isbn>1467317969</isbn><isbn>9781467317962</isbn><eisbn>0769547133</eisbn><eisbn>9780769547138</eisbn><coden>IEEPAD</coden><abstract>User habit mining plays an important role in user understanding, which is critical for improving a wide range of personalized intelligence services. Recently, some researchers proposed to mine user behavior patterns which characterize the habits of mobile users and account for the associations between user interactions and context captured by mobile devices. However, the existing approaches for mining these behavior patterns are not practical in mobile environments due to limited computing resources on mobile devices. To fulfill this crucial void, we investigate optimizing strategies which can be used for improving the efficiency of behavior pattern mining in terms of computing and memory needs. Specifically, we examine typical optimizing strategies for association rule mining and study the feasibility of applying them to behavior pattern mining, since these two problems are similar in many aspects. Moreover, we develop an efficient algorithm, named BP-Growth, for behavior pattern mining by combining two promising strategies. Finally, experimental results show that BP-Growth outperforms benchmark methods with a significant margin in terms of both computing and memory cost.</abstract><pub>IEEE</pub><doi>10.1109/MDM.2012.14</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-6245
ispartof 2012 IEEE 13th International Conference on Mobile Data Management, 2012, p.238-247
issn 1551-6245
2375-0324
language eng
recordid cdi_ieee_primary_6341395
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Association rules
behavior pattern mining
Context
Itemsets
Mobile communication
Mobile handsets
optimizing strategies
title BP-growth: Searching Strategies for Efficient Behavior Pattern Mining
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A27%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=BP-growth:%20Searching%20Strategies%20for%20Efficient%20Behavior%20Pattern%20Mining&rft.btitle=2012%20IEEE%2013th%20International%20Conference%20on%20Mobile%20Data%20Management&rft.au=Xueying%20Li&rft.date=2012-07&rft.spage=238&rft.epage=247&rft.pages=238-247&rft.issn=1551-6245&rft.eissn=2375-0324&rft.isbn=1467317969&rft.isbn_list=9781467317962&rft.coden=IEEPAD&rft_id=info:doi/10.1109/MDM.2012.14&rft_dat=%3Cieee_6IE%3E6341395%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769547133&rft.eisbn_list=9780769547138&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6341395&rfr_iscdi=true