BP-growth: Searching Strategies for Efficient Behavior Pattern Mining
User habit mining plays an important role in user understanding, which is critical for improving a wide range of personalized intelligence services. Recently, some researchers proposed to mine user behavior patterns which characterize the habits of mobile users and account for the associations betwe...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 247 |
---|---|
container_issue | |
container_start_page | 238 |
container_title | |
container_volume | |
creator | Xueying Li Huanhuan Cao Enhong Chen Hui Xiong Jilei Tian |
description | User habit mining plays an important role in user understanding, which is critical for improving a wide range of personalized intelligence services. Recently, some researchers proposed to mine user behavior patterns which characterize the habits of mobile users and account for the associations between user interactions and context captured by mobile devices. However, the existing approaches for mining these behavior patterns are not practical in mobile environments due to limited computing resources on mobile devices. To fulfill this crucial void, we investigate optimizing strategies which can be used for improving the efficiency of behavior pattern mining in terms of computing and memory needs. Specifically, we examine typical optimizing strategies for association rule mining and study the feasibility of applying them to behavior pattern mining, since these two problems are similar in many aspects. Moreover, we develop an efficient algorithm, named BP-Growth, for behavior pattern mining by combining two promising strategies. Finally, experimental results show that BP-Growth outperforms benchmark methods with a significant margin in terms of both computing and memory cost. |
doi_str_mv | 10.1109/MDM.2012.14 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6341395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6341395</ieee_id><sourcerecordid>6341395</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1274-4d40dc8c91b5dcd62eccb54d871c722b7495f4e3986136cb1f60b7165256461f3</originalsourceid><addsrcrecordid>eNotjF1LwzAYRuMX2M1deelN_0Bm3uRN0njnZv2AFQfT65GmSRvRTtKi-O8t6HNz4MB5CLkEtgRg5rq6q5acAV8CHpEZ08pI1CDEMcm40JIywfGEzACVFqCNMqckAymBKo7ynCyG4Y1NKzgwgIyUqy1t0-F77G7ynbfJdbFv892Y7Ojb6Ic8HFJehhBd9P2Yr3xnv-KktnYcferzKvZTcEHOgn0f_OKfc_J6X76sH-nm-eFpfbuhEbhGig2yxhXOQC0b1yjunaslNoUGpzmvNRoZ0AtTKBDK1RAUqzUoyaVCBUHMydXfb_Te7z9T_LDpZ68EgjBS_AIDf0zA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>BP-growth: Searching Strategies for Efficient Behavior Pattern Mining</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xueying Li ; Huanhuan Cao ; Enhong Chen ; Hui Xiong ; Jilei Tian</creator><creatorcontrib>Xueying Li ; Huanhuan Cao ; Enhong Chen ; Hui Xiong ; Jilei Tian</creatorcontrib><description>User habit mining plays an important role in user understanding, which is critical for improving a wide range of personalized intelligence services. Recently, some researchers proposed to mine user behavior patterns which characterize the habits of mobile users and account for the associations between user interactions and context captured by mobile devices. However, the existing approaches for mining these behavior patterns are not practical in mobile environments due to limited computing resources on mobile devices. To fulfill this crucial void, we investigate optimizing strategies which can be used for improving the efficiency of behavior pattern mining in terms of computing and memory needs. Specifically, we examine typical optimizing strategies for association rule mining and study the feasibility of applying them to behavior pattern mining, since these two problems are similar in many aspects. Moreover, we develop an efficient algorithm, named BP-Growth, for behavior pattern mining by combining two promising strategies. Finally, experimental results show that BP-Growth outperforms benchmark methods with a significant margin in terms of both computing and memory cost.</description><identifier>ISSN: 1551-6245</identifier><identifier>ISBN: 1467317969</identifier><identifier>ISBN: 9781467317962</identifier><identifier>EISSN: 2375-0324</identifier><identifier>EISBN: 0769547133</identifier><identifier>EISBN: 9780769547138</identifier><identifier>DOI: 10.1109/MDM.2012.14</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Association rules ; behavior pattern mining ; Context ; Itemsets ; Mobile communication ; Mobile handsets ; optimizing strategies</subject><ispartof>2012 IEEE 13th International Conference on Mobile Data Management, 2012, p.238-247</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6341395$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6341395$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xueying Li</creatorcontrib><creatorcontrib>Huanhuan Cao</creatorcontrib><creatorcontrib>Enhong Chen</creatorcontrib><creatorcontrib>Hui Xiong</creatorcontrib><creatorcontrib>Jilei Tian</creatorcontrib><title>BP-growth: Searching Strategies for Efficient Behavior Pattern Mining</title><title>2012 IEEE 13th International Conference on Mobile Data Management</title><addtitle>mdm</addtitle><description>User habit mining plays an important role in user understanding, which is critical for improving a wide range of personalized intelligence services. Recently, some researchers proposed to mine user behavior patterns which characterize the habits of mobile users and account for the associations between user interactions and context captured by mobile devices. However, the existing approaches for mining these behavior patterns are not practical in mobile environments due to limited computing resources on mobile devices. To fulfill this crucial void, we investigate optimizing strategies which can be used for improving the efficiency of behavior pattern mining in terms of computing and memory needs. Specifically, we examine typical optimizing strategies for association rule mining and study the feasibility of applying them to behavior pattern mining, since these two problems are similar in many aspects. Moreover, we develop an efficient algorithm, named BP-Growth, for behavior pattern mining by combining two promising strategies. Finally, experimental results show that BP-Growth outperforms benchmark methods with a significant margin in terms of both computing and memory cost.</description><subject>Association rules</subject><subject>behavior pattern mining</subject><subject>Context</subject><subject>Itemsets</subject><subject>Mobile communication</subject><subject>Mobile handsets</subject><subject>optimizing strategies</subject><issn>1551-6245</issn><issn>2375-0324</issn><isbn>1467317969</isbn><isbn>9781467317962</isbn><isbn>0769547133</isbn><isbn>9780769547138</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjF1LwzAYRuMX2M1deelN_0Bm3uRN0njnZv2AFQfT65GmSRvRTtKi-O8t6HNz4MB5CLkEtgRg5rq6q5acAV8CHpEZ08pI1CDEMcm40JIywfGEzACVFqCNMqckAymBKo7ynCyG4Y1NKzgwgIyUqy1t0-F77G7ynbfJdbFv892Y7Ojb6Ic8HFJehhBd9P2Yr3xnv-KktnYcferzKvZTcEHOgn0f_OKfc_J6X76sH-nm-eFpfbuhEbhGig2yxhXOQC0b1yjunaslNoUGpzmvNRoZ0AtTKBDK1RAUqzUoyaVCBUHMydXfb_Te7z9T_LDpZ68EgjBS_AIDf0zA</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Xueying Li</creator><creator>Huanhuan Cao</creator><creator>Enhong Chen</creator><creator>Hui Xiong</creator><creator>Jilei Tian</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201207</creationdate><title>BP-growth: Searching Strategies for Efficient Behavior Pattern Mining</title><author>Xueying Li ; Huanhuan Cao ; Enhong Chen ; Hui Xiong ; Jilei Tian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1274-4d40dc8c91b5dcd62eccb54d871c722b7495f4e3986136cb1f60b7165256461f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Association rules</topic><topic>behavior pattern mining</topic><topic>Context</topic><topic>Itemsets</topic><topic>Mobile communication</topic><topic>Mobile handsets</topic><topic>optimizing strategies</topic><toplevel>online_resources</toplevel><creatorcontrib>Xueying Li</creatorcontrib><creatorcontrib>Huanhuan Cao</creatorcontrib><creatorcontrib>Enhong Chen</creatorcontrib><creatorcontrib>Hui Xiong</creatorcontrib><creatorcontrib>Jilei Tian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xueying Li</au><au>Huanhuan Cao</au><au>Enhong Chen</au><au>Hui Xiong</au><au>Jilei Tian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>BP-growth: Searching Strategies for Efficient Behavior Pattern Mining</atitle><btitle>2012 IEEE 13th International Conference on Mobile Data Management</btitle><stitle>mdm</stitle><date>2012-07</date><risdate>2012</risdate><spage>238</spage><epage>247</epage><pages>238-247</pages><issn>1551-6245</issn><eissn>2375-0324</eissn><isbn>1467317969</isbn><isbn>9781467317962</isbn><eisbn>0769547133</eisbn><eisbn>9780769547138</eisbn><coden>IEEPAD</coden><abstract>User habit mining plays an important role in user understanding, which is critical for improving a wide range of personalized intelligence services. Recently, some researchers proposed to mine user behavior patterns which characterize the habits of mobile users and account for the associations between user interactions and context captured by mobile devices. However, the existing approaches for mining these behavior patterns are not practical in mobile environments due to limited computing resources on mobile devices. To fulfill this crucial void, we investigate optimizing strategies which can be used for improving the efficiency of behavior pattern mining in terms of computing and memory needs. Specifically, we examine typical optimizing strategies for association rule mining and study the feasibility of applying them to behavior pattern mining, since these two problems are similar in many aspects. Moreover, we develop an efficient algorithm, named BP-Growth, for behavior pattern mining by combining two promising strategies. Finally, experimental results show that BP-Growth outperforms benchmark methods with a significant margin in terms of both computing and memory cost.</abstract><pub>IEEE</pub><doi>10.1109/MDM.2012.14</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-6245 |
ispartof | 2012 IEEE 13th International Conference on Mobile Data Management, 2012, p.238-247 |
issn | 1551-6245 2375-0324 |
language | eng |
recordid | cdi_ieee_primary_6341395 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Association rules behavior pattern mining Context Itemsets Mobile communication Mobile handsets optimizing strategies |
title | BP-growth: Searching Strategies for Efficient Behavior Pattern Mining |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A27%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=BP-growth:%20Searching%20Strategies%20for%20Efficient%20Behavior%20Pattern%20Mining&rft.btitle=2012%20IEEE%2013th%20International%20Conference%20on%20Mobile%20Data%20Management&rft.au=Xueying%20Li&rft.date=2012-07&rft.spage=238&rft.epage=247&rft.pages=238-247&rft.issn=1551-6245&rft.eissn=2375-0324&rft.isbn=1467317969&rft.isbn_list=9781467317962&rft.coden=IEEPAD&rft_id=info:doi/10.1109/MDM.2012.14&rft_dat=%3Cieee_6IE%3E6341395%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769547133&rft.eisbn_list=9780769547138&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6341395&rfr_iscdi=true |