Systolic implementation of neural networks

Systolic implementation of neural networks is suggested. These arrays do not suffer from long feedback connections. Various learning rules are incorporated in the suggested systolic implementation of neural networks. It is shown that these arrays can be easily generalized for multilayered feedforwar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zubair, M., Madan, B.B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 482
container_issue
container_start_page 479
container_title
container_volume
creator Zubair, M.
Madan, B.B.
description Systolic implementation of neural networks is suggested. These arrays do not suffer from long feedback connections. Various learning rules are incorporated in the suggested systolic implementation of neural networks. It is shown that these arrays can be easily generalized for multilayered feedforward networks.< >
doi_str_mv 10.1109/ICCD.1989.63412
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_63412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>63412</ieee_id><sourcerecordid>63412</sourcerecordid><originalsourceid>FETCH-LOGICAL-i103t-b2597c56d35fc8e4d43dd8f31fdb80a6a52c3a5e983e43434b68a569ea4b3c463</originalsourceid><addsrcrecordid>eNotj0tLxDAURgMiKGPX4q5roTXpTdKbpdTXwIALdT2kyQ1E-xiaiMy_t-icb3F2HxzGrgWvheDmbtt1D7UwaGoNUjRnrDAtchSohWlFe8GKlD75ilLI2-aS3b4dU56H6Mo4HgYaaco2x3kq51BO9L3YYVX-mZevdMXOgx0SFSdv2MfT43v3Uu1en7fd_a6KgkOu-kaZ1intQQWHJL0E7zGACL5HbrVVjQOryCCQhHW9Rqu0ISt7cFLDht38_0Yi2h-WONrluP_rgV8WT0AS</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Systolic implementation of neural networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zubair, M. ; Madan, B.B.</creator><creatorcontrib>Zubair, M. ; Madan, B.B.</creatorcontrib><description>Systolic implementation of neural networks is suggested. These arrays do not suffer from long feedback connections. Various learning rules are incorporated in the suggested systolic implementation of neural networks. It is shown that these arrays can be easily generalized for multilayered feedforward networks.&lt; &gt;</description><identifier>ISBN: 9780818619717</identifier><identifier>ISBN: 0818619716</identifier><identifier>DOI: 10.1109/ICCD.1989.63412</identifier><language>eng</language><publisher>IEEE Comput. Soc. Press</publisher><subject>Computational modeling ; Computer networks ; Feedforward neural networks ; Hopfield neural networks ; Multi-layer neural network ; Neural networks ; Neurofeedback ; Neurons ; Optical computing ; Optical feedback</subject><ispartof>Proceedings 1989 IEEE International Conference on Computer Design: VLSI in Computers and Processors, 1989, p.479-482</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/63412$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/63412$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zubair, M.</creatorcontrib><creatorcontrib>Madan, B.B.</creatorcontrib><title>Systolic implementation of neural networks</title><title>Proceedings 1989 IEEE International Conference on Computer Design: VLSI in Computers and Processors</title><addtitle>ICCD</addtitle><description>Systolic implementation of neural networks is suggested. These arrays do not suffer from long feedback connections. Various learning rules are incorporated in the suggested systolic implementation of neural networks. It is shown that these arrays can be easily generalized for multilayered feedforward networks.&lt; &gt;</description><subject>Computational modeling</subject><subject>Computer networks</subject><subject>Feedforward neural networks</subject><subject>Hopfield neural networks</subject><subject>Multi-layer neural network</subject><subject>Neural networks</subject><subject>Neurofeedback</subject><subject>Neurons</subject><subject>Optical computing</subject><subject>Optical feedback</subject><isbn>9780818619717</isbn><isbn>0818619716</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1989</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0tLxDAURgMiKGPX4q5roTXpTdKbpdTXwIALdT2kyQ1E-xiaiMy_t-icb3F2HxzGrgWvheDmbtt1D7UwaGoNUjRnrDAtchSohWlFe8GKlD75ilLI2-aS3b4dU56H6Mo4HgYaaco2x3kq51BO9L3YYVX-mZevdMXOgx0SFSdv2MfT43v3Uu1en7fd_a6KgkOu-kaZ1intQQWHJL0E7zGACL5HbrVVjQOryCCQhHW9Rqu0ISt7cFLDht38_0Yi2h-WONrluP_rgV8WT0AS</recordid><startdate>1989</startdate><enddate>1989</enddate><creator>Zubair, M.</creator><creator>Madan, B.B.</creator><general>IEEE Comput. Soc. Press</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1989</creationdate><title>Systolic implementation of neural networks</title><author>Zubair, M. ; Madan, B.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i103t-b2597c56d35fc8e4d43dd8f31fdb80a6a52c3a5e983e43434b68a569ea4b3c463</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Computational modeling</topic><topic>Computer networks</topic><topic>Feedforward neural networks</topic><topic>Hopfield neural networks</topic><topic>Multi-layer neural network</topic><topic>Neural networks</topic><topic>Neurofeedback</topic><topic>Neurons</topic><topic>Optical computing</topic><topic>Optical feedback</topic><toplevel>online_resources</toplevel><creatorcontrib>Zubair, M.</creatorcontrib><creatorcontrib>Madan, B.B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zubair, M.</au><au>Madan, B.B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Systolic implementation of neural networks</atitle><btitle>Proceedings 1989 IEEE International Conference on Computer Design: VLSI in Computers and Processors</btitle><stitle>ICCD</stitle><date>1989</date><risdate>1989</risdate><spage>479</spage><epage>482</epage><pages>479-482</pages><isbn>9780818619717</isbn><isbn>0818619716</isbn><abstract>Systolic implementation of neural networks is suggested. These arrays do not suffer from long feedback connections. Various learning rules are incorporated in the suggested systolic implementation of neural networks. It is shown that these arrays can be easily generalized for multilayered feedforward networks.&lt; &gt;</abstract><pub>IEEE Comput. Soc. Press</pub><doi>10.1109/ICCD.1989.63412</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780818619717
ispartof Proceedings 1989 IEEE International Conference on Computer Design: VLSI in Computers and Processors, 1989, p.479-482
issn
language eng
recordid cdi_ieee_primary_63412
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational modeling
Computer networks
Feedforward neural networks
Hopfield neural networks
Multi-layer neural network
Neural networks
Neurofeedback
Neurons
Optical computing
Optical feedback
title Systolic implementation of neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A45%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Systolic%20implementation%20of%20neural%20networks&rft.btitle=Proceedings%201989%20IEEE%20International%20Conference%20on%20Computer%20Design:%20VLSI%20in%20Computers%20and%20Processors&rft.au=Zubair,%20M.&rft.date=1989&rft.spage=479&rft.epage=482&rft.pages=479-482&rft.isbn=9780818619717&rft.isbn_list=0818619716&rft_id=info:doi/10.1109/ICCD.1989.63412&rft_dat=%3Cieee_6IE%3E63412%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=63412&rfr_iscdi=true