Systolic implementation of neural networks
Systolic implementation of neural networks is suggested. These arrays do not suffer from long feedback connections. Various learning rules are incorporated in the suggested systolic implementation of neural networks. It is shown that these arrays can be easily generalized for multilayered feedforwar...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 482 |
---|---|
container_issue | |
container_start_page | 479 |
container_title | |
container_volume | |
creator | Zubair, M. Madan, B.B. |
description | Systolic implementation of neural networks is suggested. These arrays do not suffer from long feedback connections. Various learning rules are incorporated in the suggested systolic implementation of neural networks. It is shown that these arrays can be easily generalized for multilayered feedforward networks.< > |
doi_str_mv | 10.1109/ICCD.1989.63412 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_63412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>63412</ieee_id><sourcerecordid>63412</sourcerecordid><originalsourceid>FETCH-LOGICAL-i103t-b2597c56d35fc8e4d43dd8f31fdb80a6a52c3a5e983e43434b68a569ea4b3c463</originalsourceid><addsrcrecordid>eNotj0tLxDAURgMiKGPX4q5roTXpTdKbpdTXwIALdT2kyQ1E-xiaiMy_t-icb3F2HxzGrgWvheDmbtt1D7UwaGoNUjRnrDAtchSohWlFe8GKlD75ilLI2-aS3b4dU56H6Mo4HgYaaco2x3kq51BO9L3YYVX-mZevdMXOgx0SFSdv2MfT43v3Uu1en7fd_a6KgkOu-kaZ1intQQWHJL0E7zGACL5HbrVVjQOryCCQhHW9Rqu0ISt7cFLDht38_0Yi2h-WONrluP_rgV8WT0AS</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Systolic implementation of neural networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zubair, M. ; Madan, B.B.</creator><creatorcontrib>Zubair, M. ; Madan, B.B.</creatorcontrib><description>Systolic implementation of neural networks is suggested. These arrays do not suffer from long feedback connections. Various learning rules are incorporated in the suggested systolic implementation of neural networks. It is shown that these arrays can be easily generalized for multilayered feedforward networks.< ></description><identifier>ISBN: 9780818619717</identifier><identifier>ISBN: 0818619716</identifier><identifier>DOI: 10.1109/ICCD.1989.63412</identifier><language>eng</language><publisher>IEEE Comput. Soc. Press</publisher><subject>Computational modeling ; Computer networks ; Feedforward neural networks ; Hopfield neural networks ; Multi-layer neural network ; Neural networks ; Neurofeedback ; Neurons ; Optical computing ; Optical feedback</subject><ispartof>Proceedings 1989 IEEE International Conference on Computer Design: VLSI in Computers and Processors, 1989, p.479-482</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/63412$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/63412$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zubair, M.</creatorcontrib><creatorcontrib>Madan, B.B.</creatorcontrib><title>Systolic implementation of neural networks</title><title>Proceedings 1989 IEEE International Conference on Computer Design: VLSI in Computers and Processors</title><addtitle>ICCD</addtitle><description>Systolic implementation of neural networks is suggested. These arrays do not suffer from long feedback connections. Various learning rules are incorporated in the suggested systolic implementation of neural networks. It is shown that these arrays can be easily generalized for multilayered feedforward networks.< ></description><subject>Computational modeling</subject><subject>Computer networks</subject><subject>Feedforward neural networks</subject><subject>Hopfield neural networks</subject><subject>Multi-layer neural network</subject><subject>Neural networks</subject><subject>Neurofeedback</subject><subject>Neurons</subject><subject>Optical computing</subject><subject>Optical feedback</subject><isbn>9780818619717</isbn><isbn>0818619716</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1989</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0tLxDAURgMiKGPX4q5roTXpTdKbpdTXwIALdT2kyQ1E-xiaiMy_t-icb3F2HxzGrgWvheDmbtt1D7UwaGoNUjRnrDAtchSohWlFe8GKlD75ilLI2-aS3b4dU56H6Mo4HgYaaco2x3kq51BO9L3YYVX-mZevdMXOgx0SFSdv2MfT43v3Uu1en7fd_a6KgkOu-kaZ1intQQWHJL0E7zGACL5HbrVVjQOryCCQhHW9Rqu0ISt7cFLDht38_0Yi2h-WONrluP_rgV8WT0AS</recordid><startdate>1989</startdate><enddate>1989</enddate><creator>Zubair, M.</creator><creator>Madan, B.B.</creator><general>IEEE Comput. Soc. Press</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1989</creationdate><title>Systolic implementation of neural networks</title><author>Zubair, M. ; Madan, B.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i103t-b2597c56d35fc8e4d43dd8f31fdb80a6a52c3a5e983e43434b68a569ea4b3c463</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Computational modeling</topic><topic>Computer networks</topic><topic>Feedforward neural networks</topic><topic>Hopfield neural networks</topic><topic>Multi-layer neural network</topic><topic>Neural networks</topic><topic>Neurofeedback</topic><topic>Neurons</topic><topic>Optical computing</topic><topic>Optical feedback</topic><toplevel>online_resources</toplevel><creatorcontrib>Zubair, M.</creatorcontrib><creatorcontrib>Madan, B.B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zubair, M.</au><au>Madan, B.B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Systolic implementation of neural networks</atitle><btitle>Proceedings 1989 IEEE International Conference on Computer Design: VLSI in Computers and Processors</btitle><stitle>ICCD</stitle><date>1989</date><risdate>1989</risdate><spage>479</spage><epage>482</epage><pages>479-482</pages><isbn>9780818619717</isbn><isbn>0818619716</isbn><abstract>Systolic implementation of neural networks is suggested. These arrays do not suffer from long feedback connections. Various learning rules are incorporated in the suggested systolic implementation of neural networks. It is shown that these arrays can be easily generalized for multilayered feedforward networks.< ></abstract><pub>IEEE Comput. Soc. Press</pub><doi>10.1109/ICCD.1989.63412</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780818619717 |
ispartof | Proceedings 1989 IEEE International Conference on Computer Design: VLSI in Computers and Processors, 1989, p.479-482 |
issn | |
language | eng |
recordid | cdi_ieee_primary_63412 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computational modeling Computer networks Feedforward neural networks Hopfield neural networks Multi-layer neural network Neural networks Neurofeedback Neurons Optical computing Optical feedback |
title | Systolic implementation of neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A45%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Systolic%20implementation%20of%20neural%20networks&rft.btitle=Proceedings%201989%20IEEE%20International%20Conference%20on%20Computer%20Design:%20VLSI%20in%20Computers%20and%20Processors&rft.au=Zubair,%20M.&rft.date=1989&rft.spage=479&rft.epage=482&rft.pages=479-482&rft.isbn=9780818619717&rft.isbn_list=0818619716&rft_id=info:doi/10.1109/ICCD.1989.63412&rft_dat=%3Cieee_6IE%3E63412%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=63412&rfr_iscdi=true |