Management of graphical symbols in a CAD environment: A neural network approach

A new neural network called AUGURS is designed to assist a user of a computer-aided design package in utilizing standard graphical symbols. AUGURS is similar to the Zipcode Net by Le Cun et al. (1989, 1990) in its encoding of transformation knowledge into its network structure, but is much more comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yang, D.S., Webster, J.L., Renmdell, L.A., Garrett, J.H., Shaw, D.S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 279
container_issue
container_start_page 272
container_title
container_volume
creator Yang, D.S.
Webster, J.L.
Renmdell, L.A.
Garrett, J.H.
Shaw, D.S.
description A new neural network called AUGURS is designed to assist a user of a computer-aided design package in utilizing standard graphical symbols. AUGURS is similar to the Zipcode Net by Le Cun et al. (1989, 1990) in its encoding of transformation knowledge into its network structure, but is much more compact and efficient. The experiments compare AUGURS with two versions of the Zipcode Net and a traditional layered feedforward network with an unconstrained structure. The experimental results show that AUGURS can recognize a user-drawn symbol with better accuracy and plausibility than the other networks with the least amount of recognition time when the number of training examples is limited.
doi_str_mv 10.1109/TAI.1993.633967
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_633967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>633967</ieee_id><sourcerecordid>26088702</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-8d7c8ef742c38b316c4ad26ee5c3de8c5d76299b18445c0f277bfa5196d6a92c3</originalsourceid><addsrcrecordid>eNot0DtPwzAUBWBLgERbmJGYPLEl-JH4wRaVV6WiLmWOHOemNSROsFNQ_z1BZbrLd86RLkI3lKSUEn2_LVYp1ZqngnMt5BmaE0WVyBgh-hzNKBE8EZKTSzSP8YOQPKc8m6HNm_FmBx34EfcN3gUz7J01LY7HrurbiJ3HBi-LRwz-24Xe_8kHXGAPhzAxD-NPHz6xGYbQG7u_QheNaSNc_98Fen9-2i5fk_XmZbUs1oljhI-JqqVV0MiMWa4qToXNTM0EQG55DcrmtRRM64qqLMstaZiUVWNyqkUtjJ5CC3R36p1mvw4Qx7Jz0ULbGg_9IZZMEKUkYRO8PUEHAOUQXGfCsTw9if8C7QhawA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>26088702</pqid></control><display><type>conference_proceeding</type><title>Management of graphical symbols in a CAD environment: A neural network approach</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yang, D.S. ; Webster, J.L. ; Renmdell, L.A. ; Garrett, J.H. ; Shaw, D.S.</creator><creatorcontrib>Yang, D.S. ; Webster, J.L. ; Renmdell, L.A. ; Garrett, J.H. ; Shaw, D.S.</creatorcontrib><description>A new neural network called AUGURS is designed to assist a user of a computer-aided design package in utilizing standard graphical symbols. AUGURS is similar to the Zipcode Net by Le Cun et al. (1989, 1990) in its encoding of transformation knowledge into its network structure, but is much more compact and efficient. The experiments compare AUGURS with two versions of the Zipcode Net and a traditional layered feedforward network with an unconstrained structure. The experimental results show that AUGURS can recognize a user-drawn symbol with better accuracy and plausibility than the other networks with the least amount of recognition time when the number of training examples is limited.</description><identifier>ISSN: 1063-6730</identifier><identifier>ISBN: 0818642009</identifier><identifier>ISBN: 9780818642005</identifier><identifier>DOI: 10.1109/TAI.1993.633967</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Buildings ; Computer network management ; Design automation ; Environmental management ; Floppy disks ; Intelligent networks ; Libraries ; Neural networks ; Standardization</subject><ispartof>Proceedings of 1993 IEEE Conference on Tools with Al (TAI-93), 1993, p.272-279</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/633967$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2058,4050,4051,27924,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/633967$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, D.S.</creatorcontrib><creatorcontrib>Webster, J.L.</creatorcontrib><creatorcontrib>Renmdell, L.A.</creatorcontrib><creatorcontrib>Garrett, J.H.</creatorcontrib><creatorcontrib>Shaw, D.S.</creatorcontrib><title>Management of graphical symbols in a CAD environment: A neural network approach</title><title>Proceedings of 1993 IEEE Conference on Tools with Al (TAI-93)</title><addtitle>TAI</addtitle><description>A new neural network called AUGURS is designed to assist a user of a computer-aided design package in utilizing standard graphical symbols. AUGURS is similar to the Zipcode Net by Le Cun et al. (1989, 1990) in its encoding of transformation knowledge into its network structure, but is much more compact and efficient. The experiments compare AUGURS with two versions of the Zipcode Net and a traditional layered feedforward network with an unconstrained structure. The experimental results show that AUGURS can recognize a user-drawn symbol with better accuracy and plausibility than the other networks with the least amount of recognition time when the number of training examples is limited.</description><subject>Application software</subject><subject>Buildings</subject><subject>Computer network management</subject><subject>Design automation</subject><subject>Environmental management</subject><subject>Floppy disks</subject><subject>Intelligent networks</subject><subject>Libraries</subject><subject>Neural networks</subject><subject>Standardization</subject><issn>1063-6730</issn><isbn>0818642009</isbn><isbn>9780818642005</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1993</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNot0DtPwzAUBWBLgERbmJGYPLEl-JH4wRaVV6WiLmWOHOemNSROsFNQ_z1BZbrLd86RLkI3lKSUEn2_LVYp1ZqngnMt5BmaE0WVyBgh-hzNKBE8EZKTSzSP8YOQPKc8m6HNm_FmBx34EfcN3gUz7J01LY7HrurbiJ3HBi-LRwz-24Xe_8kHXGAPhzAxD-NPHz6xGYbQG7u_QheNaSNc_98Fen9-2i5fk_XmZbUs1oljhI-JqqVV0MiMWa4qToXNTM0EQG55DcrmtRRM64qqLMstaZiUVWNyqkUtjJ5CC3R36p1mvw4Qx7Jz0ULbGg_9IZZMEKUkYRO8PUEHAOUQXGfCsTw9if8C7QhawA</recordid><startdate>1993</startdate><enddate>1993</enddate><creator>Yang, D.S.</creator><creator>Webster, J.L.</creator><creator>Renmdell, L.A.</creator><creator>Garrett, J.H.</creator><creator>Shaw, D.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1993</creationdate><title>Management of graphical symbols in a CAD environment: A neural network approach</title><author>Yang, D.S. ; Webster, J.L. ; Renmdell, L.A. ; Garrett, J.H. ; Shaw, D.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-8d7c8ef742c38b316c4ad26ee5c3de8c5d76299b18445c0f277bfa5196d6a92c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Application software</topic><topic>Buildings</topic><topic>Computer network management</topic><topic>Design automation</topic><topic>Environmental management</topic><topic>Floppy disks</topic><topic>Intelligent networks</topic><topic>Libraries</topic><topic>Neural networks</topic><topic>Standardization</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, D.S.</creatorcontrib><creatorcontrib>Webster, J.L.</creatorcontrib><creatorcontrib>Renmdell, L.A.</creatorcontrib><creatorcontrib>Garrett, J.H.</creatorcontrib><creatorcontrib>Shaw, D.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, D.S.</au><au>Webster, J.L.</au><au>Renmdell, L.A.</au><au>Garrett, J.H.</au><au>Shaw, D.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Management of graphical symbols in a CAD environment: A neural network approach</atitle><btitle>Proceedings of 1993 IEEE Conference on Tools with Al (TAI-93)</btitle><stitle>TAI</stitle><date>1993</date><risdate>1993</risdate><spage>272</spage><epage>279</epage><pages>272-279</pages><issn>1063-6730</issn><isbn>0818642009</isbn><isbn>9780818642005</isbn><abstract>A new neural network called AUGURS is designed to assist a user of a computer-aided design package in utilizing standard graphical symbols. AUGURS is similar to the Zipcode Net by Le Cun et al. (1989, 1990) in its encoding of transformation knowledge into its network structure, but is much more compact and efficient. The experiments compare AUGURS with two versions of the Zipcode Net and a traditional layered feedforward network with an unconstrained structure. The experimental results show that AUGURS can recognize a user-drawn symbol with better accuracy and plausibility than the other networks with the least amount of recognition time when the number of training examples is limited.</abstract><pub>IEEE</pub><doi>10.1109/TAI.1993.633967</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6730
ispartof Proceedings of 1993 IEEE Conference on Tools with Al (TAI-93), 1993, p.272-279
issn 1063-6730
language eng
recordid cdi_ieee_primary_633967
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
Buildings
Computer network management
Design automation
Environmental management
Floppy disks
Intelligent networks
Libraries
Neural networks
Standardization
title Management of graphical symbols in a CAD environment: A neural network approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A23%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Management%20of%20graphical%20symbols%20in%20a%20CAD%20environment:%20A%20neural%20network%20approach&rft.btitle=Proceedings%20of%201993%20IEEE%20Conference%20on%20Tools%20with%20Al%20(TAI-93)&rft.au=Yang,%20D.S.&rft.date=1993&rft.spage=272&rft.epage=279&rft.pages=272-279&rft.issn=1063-6730&rft.isbn=0818642009&rft.isbn_list=9780818642005&rft_id=info:doi/10.1109/TAI.1993.633967&rft_dat=%3Cproquest_6IE%3E26088702%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26088702&rft_id=info:pmid/&rft_ieee_id=633967&rfr_iscdi=true