GPU acceleration for the pricing of the CMS spread option

This paper presents a study on the pricing of a financial derivative using parallel algorithms which are optimised to run on a GPU. Our chosen financial derivative, the constant maturity swap (CMS) spread option, has an associated pricing model which incorporates several algorithmic steps, including...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Nasar-Ullah, Q.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title
container_volume
creator Nasar-Ullah, Q.
description This paper presents a study on the pricing of a financial derivative using parallel algorithms which are optimised to run on a GPU. Our chosen financial derivative, the constant maturity swap (CMS) spread option, has an associated pricing model which incorporates several algorithmic steps, including: evaluation of probability distributions, implied volatility root-finding, integration and copula simulation. The novel aspects of the analysis are: (1) a fast new accurate double precision normal distribution approximation for the GPU (based on the work of Ooura), (2) a parallel grid search algorithm for calculating implied volatility and (3) an optimised data and instruction workflow for the pricing of the CMS spread option. The study is focused on 91.5% of the runtime of a benchmark (CPU based) model and results in a speed-up factor of 10.3 when compared to our single-threaded benchmark model. Our work is implemented in double precision using the NVIDIA GF100 architecture.
doi_str_mv 10.1109/InPar.2012.6339598
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6339598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6339598</ieee_id><sourcerecordid>6339598</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-fd48b8eda68e24f02441918d4ba9e51ab609e96fa0851e74d71126e56fbb179a3</originalsourceid><addsrcrecordid>eNo1j0FLxDAUhCMiqGv_gF7yB1rz0jTJO0rR3YUVF1zB2_LavmhlbUvai__equtchg-GYUaIa1AZgMLbdbelmGkFOrN5jgX6E3EJxrpcz_x6KhJ0_p-1PhfJOH6oWR6UdvZC4HL7Iqmu-cCRprbvZOijnN5ZDrGt2-5N9uEXy8dnOQ6RqZH98BO8EmeBDiMnR1-I3cP9rlylm6flurzbpC2qKQ2N8ZXnhqxnbYLSxgCCb0xFyAVQZRUy2kDKF8DONA5AWy5sqCpwSPlC3PzVtsy8n0d9UvzaH8_m31sIR3k</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>GPU acceleration for the pricing of the CMS spread option</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nasar-Ullah, Q.</creator><creatorcontrib>Nasar-Ullah, Q.</creatorcontrib><description>This paper presents a study on the pricing of a financial derivative using parallel algorithms which are optimised to run on a GPU. Our chosen financial derivative, the constant maturity swap (CMS) spread option, has an associated pricing model which incorporates several algorithmic steps, including: evaluation of probability distributions, implied volatility root-finding, integration and copula simulation. The novel aspects of the analysis are: (1) a fast new accurate double precision normal distribution approximation for the GPU (based on the work of Ooura), (2) a parallel grid search algorithm for calculating implied volatility and (3) an optimised data and instruction workflow for the pricing of the CMS spread option. The study is focused on 91.5% of the runtime of a benchmark (CPU based) model and results in a speed-up factor of 10.3 when compared to our single-threaded benchmark model. Our work is implemented in double precision using the NVIDIA GF100 architecture.</description><identifier>ISBN: 9781467326322</identifier><identifier>ISBN: 1467326321</identifier><identifier>EISBN: 146732633X</identifier><identifier>EISBN: 9781467326339</identifier><identifier>EISBN: 9781467326315</identifier><identifier>EISBN: 1467326313</identifier><identifier>DOI: 10.1109/InPar.2012.6339598</identifier><language>eng</language><publisher>IEEE</publisher><subject>Abstracts ; Acceleration ; CMS spread option ; Derivative pricing ; GPU ; Graphics processing unit ; Indexes ; Normal distribution ; Parallel grid search ; Pipelines</subject><ispartof>2012 Innovative Parallel Computing (InPar), 2012, p.1-10</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6339598$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6339598$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nasar-Ullah, Q.</creatorcontrib><title>GPU acceleration for the pricing of the CMS spread option</title><title>2012 Innovative Parallel Computing (InPar)</title><addtitle>InPar</addtitle><description>This paper presents a study on the pricing of a financial derivative using parallel algorithms which are optimised to run on a GPU. Our chosen financial derivative, the constant maturity swap (CMS) spread option, has an associated pricing model which incorporates several algorithmic steps, including: evaluation of probability distributions, implied volatility root-finding, integration and copula simulation. The novel aspects of the analysis are: (1) a fast new accurate double precision normal distribution approximation for the GPU (based on the work of Ooura), (2) a parallel grid search algorithm for calculating implied volatility and (3) an optimised data and instruction workflow for the pricing of the CMS spread option. The study is focused on 91.5% of the runtime of a benchmark (CPU based) model and results in a speed-up factor of 10.3 when compared to our single-threaded benchmark model. Our work is implemented in double precision using the NVIDIA GF100 architecture.</description><subject>Abstracts</subject><subject>Acceleration</subject><subject>CMS spread option</subject><subject>Derivative pricing</subject><subject>GPU</subject><subject>Graphics processing unit</subject><subject>Indexes</subject><subject>Normal distribution</subject><subject>Parallel grid search</subject><subject>Pipelines</subject><isbn>9781467326322</isbn><isbn>1467326321</isbn><isbn>146732633X</isbn><isbn>9781467326339</isbn><isbn>9781467326315</isbn><isbn>1467326313</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j0FLxDAUhCMiqGv_gF7yB1rz0jTJO0rR3YUVF1zB2_LavmhlbUvai__equtchg-GYUaIa1AZgMLbdbelmGkFOrN5jgX6E3EJxrpcz_x6KhJ0_p-1PhfJOH6oWR6UdvZC4HL7Iqmu-cCRprbvZOijnN5ZDrGt2-5N9uEXy8dnOQ6RqZH98BO8EmeBDiMnR1-I3cP9rlylm6flurzbpC2qKQ2N8ZXnhqxnbYLSxgCCb0xFyAVQZRUy2kDKF8DONA5AWy5sqCpwSPlC3PzVtsy8n0d9UvzaH8_m31sIR3k</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Nasar-Ullah, Q.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201205</creationdate><title>GPU acceleration for the pricing of the CMS spread option</title><author>Nasar-Ullah, Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-fd48b8eda68e24f02441918d4ba9e51ab609e96fa0851e74d71126e56fbb179a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Abstracts</topic><topic>Acceleration</topic><topic>CMS spread option</topic><topic>Derivative pricing</topic><topic>GPU</topic><topic>Graphics processing unit</topic><topic>Indexes</topic><topic>Normal distribution</topic><topic>Parallel grid search</topic><topic>Pipelines</topic><toplevel>online_resources</toplevel><creatorcontrib>Nasar-Ullah, Q.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nasar-Ullah, Q.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>GPU acceleration for the pricing of the CMS spread option</atitle><btitle>2012 Innovative Parallel Computing (InPar)</btitle><stitle>InPar</stitle><date>2012-05</date><risdate>2012</risdate><spage>1</spage><epage>10</epage><pages>1-10</pages><isbn>9781467326322</isbn><isbn>1467326321</isbn><eisbn>146732633X</eisbn><eisbn>9781467326339</eisbn><eisbn>9781467326315</eisbn><eisbn>1467326313</eisbn><abstract>This paper presents a study on the pricing of a financial derivative using parallel algorithms which are optimised to run on a GPU. Our chosen financial derivative, the constant maturity swap (CMS) spread option, has an associated pricing model which incorporates several algorithmic steps, including: evaluation of probability distributions, implied volatility root-finding, integration and copula simulation. The novel aspects of the analysis are: (1) a fast new accurate double precision normal distribution approximation for the GPU (based on the work of Ooura), (2) a parallel grid search algorithm for calculating implied volatility and (3) an optimised data and instruction workflow for the pricing of the CMS spread option. The study is focused on 91.5% of the runtime of a benchmark (CPU based) model and results in a speed-up factor of 10.3 when compared to our single-threaded benchmark model. Our work is implemented in double precision using the NVIDIA GF100 architecture.</abstract><pub>IEEE</pub><doi>10.1109/InPar.2012.6339598</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467326322
ispartof 2012 Innovative Parallel Computing (InPar), 2012, p.1-10
issn
language eng
recordid cdi_ieee_primary_6339598
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Abstracts
Acceleration
CMS spread option
Derivative pricing
GPU
Graphics processing unit
Indexes
Normal distribution
Parallel grid search
Pipelines
title GPU acceleration for the pricing of the CMS spread option
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A28%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=GPU%20acceleration%20for%20the%20pricing%20of%20the%20CMS%20spread%20option&rft.btitle=2012%20Innovative%20Parallel%20Computing%20(InPar)&rft.au=Nasar-Ullah,%20Q.&rft.date=2012-05&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.isbn=9781467326322&rft.isbn_list=1467326321&rft_id=info:doi/10.1109/InPar.2012.6339598&rft_dat=%3Cieee_6IE%3E6339598%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=146732633X&rft.eisbn_list=9781467326339&rft.eisbn_list=9781467326315&rft.eisbn_list=1467326313&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6339598&rfr_iscdi=true