GPU acceleration for the pricing of the CMS spread option
This paper presents a study on the pricing of a financial derivative using parallel algorithms which are optimised to run on a GPU. Our chosen financial derivative, the constant maturity swap (CMS) spread option, has an associated pricing model which incorporates several algorithmic steps, including...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Nasar-Ullah, Q. |
description | This paper presents a study on the pricing of a financial derivative using parallel algorithms which are optimised to run on a GPU. Our chosen financial derivative, the constant maturity swap (CMS) spread option, has an associated pricing model which incorporates several algorithmic steps, including: evaluation of probability distributions, implied volatility root-finding, integration and copula simulation. The novel aspects of the analysis are: (1) a fast new accurate double precision normal distribution approximation for the GPU (based on the work of Ooura), (2) a parallel grid search algorithm for calculating implied volatility and (3) an optimised data and instruction workflow for the pricing of the CMS spread option. The study is focused on 91.5% of the runtime of a benchmark (CPU based) model and results in a speed-up factor of 10.3 when compared to our single-threaded benchmark model. Our work is implemented in double precision using the NVIDIA GF100 architecture. |
doi_str_mv | 10.1109/InPar.2012.6339598 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6339598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6339598</ieee_id><sourcerecordid>6339598</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-fd48b8eda68e24f02441918d4ba9e51ab609e96fa0851e74d71126e56fbb179a3</originalsourceid><addsrcrecordid>eNo1j0FLxDAUhCMiqGv_gF7yB1rz0jTJO0rR3YUVF1zB2_LavmhlbUvai__equtchg-GYUaIa1AZgMLbdbelmGkFOrN5jgX6E3EJxrpcz_x6KhJ0_p-1PhfJOH6oWR6UdvZC4HL7Iqmu-cCRprbvZOijnN5ZDrGt2-5N9uEXy8dnOQ6RqZH98BO8EmeBDiMnR1-I3cP9rlylm6flurzbpC2qKQ2N8ZXnhqxnbYLSxgCCb0xFyAVQZRUy2kDKF8DONA5AWy5sqCpwSPlC3PzVtsy8n0d9UvzaH8_m31sIR3k</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>GPU acceleration for the pricing of the CMS spread option</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nasar-Ullah, Q.</creator><creatorcontrib>Nasar-Ullah, Q.</creatorcontrib><description>This paper presents a study on the pricing of a financial derivative using parallel algorithms which are optimised to run on a GPU. Our chosen financial derivative, the constant maturity swap (CMS) spread option, has an associated pricing model which incorporates several algorithmic steps, including: evaluation of probability distributions, implied volatility root-finding, integration and copula simulation. The novel aspects of the analysis are: (1) a fast new accurate double precision normal distribution approximation for the GPU (based on the work of Ooura), (2) a parallel grid search algorithm for calculating implied volatility and (3) an optimised data and instruction workflow for the pricing of the CMS spread option. The study is focused on 91.5% of the runtime of a benchmark (CPU based) model and results in a speed-up factor of 10.3 when compared to our single-threaded benchmark model. Our work is implemented in double precision using the NVIDIA GF100 architecture.</description><identifier>ISBN: 9781467326322</identifier><identifier>ISBN: 1467326321</identifier><identifier>EISBN: 146732633X</identifier><identifier>EISBN: 9781467326339</identifier><identifier>EISBN: 9781467326315</identifier><identifier>EISBN: 1467326313</identifier><identifier>DOI: 10.1109/InPar.2012.6339598</identifier><language>eng</language><publisher>IEEE</publisher><subject>Abstracts ; Acceleration ; CMS spread option ; Derivative pricing ; GPU ; Graphics processing unit ; Indexes ; Normal distribution ; Parallel grid search ; Pipelines</subject><ispartof>2012 Innovative Parallel Computing (InPar), 2012, p.1-10</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6339598$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6339598$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nasar-Ullah, Q.</creatorcontrib><title>GPU acceleration for the pricing of the CMS spread option</title><title>2012 Innovative Parallel Computing (InPar)</title><addtitle>InPar</addtitle><description>This paper presents a study on the pricing of a financial derivative using parallel algorithms which are optimised to run on a GPU. Our chosen financial derivative, the constant maturity swap (CMS) spread option, has an associated pricing model which incorporates several algorithmic steps, including: evaluation of probability distributions, implied volatility root-finding, integration and copula simulation. The novel aspects of the analysis are: (1) a fast new accurate double precision normal distribution approximation for the GPU (based on the work of Ooura), (2) a parallel grid search algorithm for calculating implied volatility and (3) an optimised data and instruction workflow for the pricing of the CMS spread option. The study is focused on 91.5% of the runtime of a benchmark (CPU based) model and results in a speed-up factor of 10.3 when compared to our single-threaded benchmark model. Our work is implemented in double precision using the NVIDIA GF100 architecture.</description><subject>Abstracts</subject><subject>Acceleration</subject><subject>CMS spread option</subject><subject>Derivative pricing</subject><subject>GPU</subject><subject>Graphics processing unit</subject><subject>Indexes</subject><subject>Normal distribution</subject><subject>Parallel grid search</subject><subject>Pipelines</subject><isbn>9781467326322</isbn><isbn>1467326321</isbn><isbn>146732633X</isbn><isbn>9781467326339</isbn><isbn>9781467326315</isbn><isbn>1467326313</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j0FLxDAUhCMiqGv_gF7yB1rz0jTJO0rR3YUVF1zB2_LavmhlbUvai__equtchg-GYUaIa1AZgMLbdbelmGkFOrN5jgX6E3EJxrpcz_x6KhJ0_p-1PhfJOH6oWR6UdvZC4HL7Iqmu-cCRprbvZOijnN5ZDrGt2-5N9uEXy8dnOQ6RqZH98BO8EmeBDiMnR1-I3cP9rlylm6flurzbpC2qKQ2N8ZXnhqxnbYLSxgCCb0xFyAVQZRUy2kDKF8DONA5AWy5sqCpwSPlC3PzVtsy8n0d9UvzaH8_m31sIR3k</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Nasar-Ullah, Q.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201205</creationdate><title>GPU acceleration for the pricing of the CMS spread option</title><author>Nasar-Ullah, Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-fd48b8eda68e24f02441918d4ba9e51ab609e96fa0851e74d71126e56fbb179a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Abstracts</topic><topic>Acceleration</topic><topic>CMS spread option</topic><topic>Derivative pricing</topic><topic>GPU</topic><topic>Graphics processing unit</topic><topic>Indexes</topic><topic>Normal distribution</topic><topic>Parallel grid search</topic><topic>Pipelines</topic><toplevel>online_resources</toplevel><creatorcontrib>Nasar-Ullah, Q.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nasar-Ullah, Q.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>GPU acceleration for the pricing of the CMS spread option</atitle><btitle>2012 Innovative Parallel Computing (InPar)</btitle><stitle>InPar</stitle><date>2012-05</date><risdate>2012</risdate><spage>1</spage><epage>10</epage><pages>1-10</pages><isbn>9781467326322</isbn><isbn>1467326321</isbn><eisbn>146732633X</eisbn><eisbn>9781467326339</eisbn><eisbn>9781467326315</eisbn><eisbn>1467326313</eisbn><abstract>This paper presents a study on the pricing of a financial derivative using parallel algorithms which are optimised to run on a GPU. Our chosen financial derivative, the constant maturity swap (CMS) spread option, has an associated pricing model which incorporates several algorithmic steps, including: evaluation of probability distributions, implied volatility root-finding, integration and copula simulation. The novel aspects of the analysis are: (1) a fast new accurate double precision normal distribution approximation for the GPU (based on the work of Ooura), (2) a parallel grid search algorithm for calculating implied volatility and (3) an optimised data and instruction workflow for the pricing of the CMS spread option. The study is focused on 91.5% of the runtime of a benchmark (CPU based) model and results in a speed-up factor of 10.3 when compared to our single-threaded benchmark model. Our work is implemented in double precision using the NVIDIA GF100 architecture.</abstract><pub>IEEE</pub><doi>10.1109/InPar.2012.6339598</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467326322 |
ispartof | 2012 Innovative Parallel Computing (InPar), 2012, p.1-10 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6339598 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Abstracts Acceleration CMS spread option Derivative pricing GPU Graphics processing unit Indexes Normal distribution Parallel grid search Pipelines |
title | GPU acceleration for the pricing of the CMS spread option |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A28%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=GPU%20acceleration%20for%20the%20pricing%20of%20the%20CMS%20spread%20option&rft.btitle=2012%20Innovative%20Parallel%20Computing%20(InPar)&rft.au=Nasar-Ullah,%20Q.&rft.date=2012-05&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.isbn=9781467326322&rft.isbn_list=1467326321&rft_id=info:doi/10.1109/InPar.2012.6339598&rft_dat=%3Cieee_6IE%3E6339598%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=146732633X&rft.eisbn_list=9781467326339&rft.eisbn_list=9781467326315&rft.eisbn_list=1467326313&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6339598&rfr_iscdi=true |