Predicting arrival times of buses using real-time GPS measurements
Predicting arrival times of buses is a key challenge in the context of building intelligent public transportation systems. In this paper, we describe an efficient non-parametric algorithm which provides highly accurate predictions based on real-time GPS measurements. The key idea is to use a Kernel...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1232 |
---|---|
container_issue | |
container_start_page | 1227 |
container_title | |
container_volume | |
creator | Sinn, Mathieu Yoon, Ji Won Calabrese, Francesco Bouillet, Eric |
description | Predicting arrival times of buses is a key challenge in the context of building intelligent public transportation systems. In this paper, we describe an efficient non-parametric algorithm which provides highly accurate predictions based on real-time GPS measurements. The key idea is to use a Kernel Regression model to represent the dependencies between position updates and the arrival times at bus stops. The performance of the proposed algorithm is evaluated on real data from the public bus transportation system in Dublin, Ireland. For a time horizon of 50 minutes, the prediction error of the algorithm is less than 10 percent on average. It clearly outperforms parametric methods which use a Linear Regression model, predictions based on the K-Nearest Neighbor algorithm, and a system which computes predictions of arrival times based on the current delay of buses. A study investigating the selection of interpolation points to reduce the size of the training set concludes the paper. |
doi_str_mv | 10.1109/ITSC.2012.6338767 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6338767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6338767</ieee_id><sourcerecordid>6338767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-164108f02c2b07d7695005dd386bafbc93660f3e5086e8eddfd8d2b331c708273</originalsourceid><addsrcrecordid>eNpVkF1LwzAYheMXOGZ_gHiTP9D6Jm-bpJda3BwMHGxej7R5I5V2StIK_ns7HIJX5-E8cC4OY7cCMiGgvF_ttlUmQchMIRqt9BlLSm1ErjQiTN05m0lRYAog9MU_l8Pln4PymiUxvk8ERphc6hl73ARybTO0hzduQ2i_bMeHtqfIPzyvxzjBGI8ykO3So-HLzZb3ZOMYqKfDEG_YlbddpOSUc_a6eNpVz-n6ZbmqHtZpIyUOqVC5AONBNrIG7bQqC4DCOTSqtr5uSlQKPFIBRpEh57wzTtaIotFgpMY5u_vdbYlo_xna3obv_ekR_AE8r07y</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Predicting arrival times of buses using real-time GPS measurements</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sinn, Mathieu ; Yoon, Ji Won ; Calabrese, Francesco ; Bouillet, Eric</creator><creatorcontrib>Sinn, Mathieu ; Yoon, Ji Won ; Calabrese, Francesco ; Bouillet, Eric</creatorcontrib><description>Predicting arrival times of buses is a key challenge in the context of building intelligent public transportation systems. In this paper, we describe an efficient non-parametric algorithm which provides highly accurate predictions based on real-time GPS measurements. The key idea is to use a Kernel Regression model to represent the dependencies between position updates and the arrival times at bus stops. The performance of the proposed algorithm is evaluated on real data from the public bus transportation system in Dublin, Ireland. For a time horizon of 50 minutes, the prediction error of the algorithm is less than 10 percent on average. It clearly outperforms parametric methods which use a Linear Regression model, predictions based on the K-Nearest Neighbor algorithm, and a system which computes predictions of arrival times based on the current delay of buses. A study investigating the selection of interpolation points to reduce the size of the training set concludes the paper.</description><identifier>ISSN: 2153-0009</identifier><identifier>ISBN: 9781467330640</identifier><identifier>ISBN: 1467330647</identifier><identifier>EISSN: 2153-0017</identifier><identifier>EISBN: 9781467330633</identifier><identifier>EISBN: 9781467330626</identifier><identifier>EISBN: 1467330639</identifier><identifier>EISBN: 1467330620</identifier><identifier>DOI: 10.1109/ITSC.2012.6338767</identifier><language>eng</language><publisher>IEEE</publisher><subject>Delay ; Interpolation ; Kernel ; Linear regression ; Prediction algorithms ; Training ; Trajectory</subject><ispartof>2012 15th International IEEE Conference on Intelligent Transportation Systems, 2012, p.1227-1232</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-164108f02c2b07d7695005dd386bafbc93660f3e5086e8eddfd8d2b331c708273</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6338767$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6338767$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sinn, Mathieu</creatorcontrib><creatorcontrib>Yoon, Ji Won</creatorcontrib><creatorcontrib>Calabrese, Francesco</creatorcontrib><creatorcontrib>Bouillet, Eric</creatorcontrib><title>Predicting arrival times of buses using real-time GPS measurements</title><title>2012 15th International IEEE Conference on Intelligent Transportation Systems</title><addtitle>ITSC</addtitle><description>Predicting arrival times of buses is a key challenge in the context of building intelligent public transportation systems. In this paper, we describe an efficient non-parametric algorithm which provides highly accurate predictions based on real-time GPS measurements. The key idea is to use a Kernel Regression model to represent the dependencies between position updates and the arrival times at bus stops. The performance of the proposed algorithm is evaluated on real data from the public bus transportation system in Dublin, Ireland. For a time horizon of 50 minutes, the prediction error of the algorithm is less than 10 percent on average. It clearly outperforms parametric methods which use a Linear Regression model, predictions based on the K-Nearest Neighbor algorithm, and a system which computes predictions of arrival times based on the current delay of buses. A study investigating the selection of interpolation points to reduce the size of the training set concludes the paper.</description><subject>Delay</subject><subject>Interpolation</subject><subject>Kernel</subject><subject>Linear regression</subject><subject>Prediction algorithms</subject><subject>Training</subject><subject>Trajectory</subject><issn>2153-0009</issn><issn>2153-0017</issn><isbn>9781467330640</isbn><isbn>1467330647</isbn><isbn>9781467330633</isbn><isbn>9781467330626</isbn><isbn>1467330639</isbn><isbn>1467330620</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkF1LwzAYheMXOGZ_gHiTP9D6Jm-bpJda3BwMHGxej7R5I5V2StIK_ns7HIJX5-E8cC4OY7cCMiGgvF_ttlUmQchMIRqt9BlLSm1ErjQiTN05m0lRYAog9MU_l8Pln4PymiUxvk8ERphc6hl73ARybTO0hzduQ2i_bMeHtqfIPzyvxzjBGI8ykO3So-HLzZb3ZOMYqKfDEG_YlbddpOSUc_a6eNpVz-n6ZbmqHtZpIyUOqVC5AONBNrIG7bQqC4DCOTSqtr5uSlQKPFIBRpEh57wzTtaIotFgpMY5u_vdbYlo_xna3obv_ekR_AE8r07y</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Sinn, Mathieu</creator><creator>Yoon, Ji Won</creator><creator>Calabrese, Francesco</creator><creator>Bouillet, Eric</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201209</creationdate><title>Predicting arrival times of buses using real-time GPS measurements</title><author>Sinn, Mathieu ; Yoon, Ji Won ; Calabrese, Francesco ; Bouillet, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-164108f02c2b07d7695005dd386bafbc93660f3e5086e8eddfd8d2b331c708273</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Delay</topic><topic>Interpolation</topic><topic>Kernel</topic><topic>Linear regression</topic><topic>Prediction algorithms</topic><topic>Training</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Sinn, Mathieu</creatorcontrib><creatorcontrib>Yoon, Ji Won</creatorcontrib><creatorcontrib>Calabrese, Francesco</creatorcontrib><creatorcontrib>Bouillet, Eric</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sinn, Mathieu</au><au>Yoon, Ji Won</au><au>Calabrese, Francesco</au><au>Bouillet, Eric</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Predicting arrival times of buses using real-time GPS measurements</atitle><btitle>2012 15th International IEEE Conference on Intelligent Transportation Systems</btitle><stitle>ITSC</stitle><date>2012-09</date><risdate>2012</risdate><spage>1227</spage><epage>1232</epage><pages>1227-1232</pages><issn>2153-0009</issn><eissn>2153-0017</eissn><isbn>9781467330640</isbn><isbn>1467330647</isbn><eisbn>9781467330633</eisbn><eisbn>9781467330626</eisbn><eisbn>1467330639</eisbn><eisbn>1467330620</eisbn><abstract>Predicting arrival times of buses is a key challenge in the context of building intelligent public transportation systems. In this paper, we describe an efficient non-parametric algorithm which provides highly accurate predictions based on real-time GPS measurements. The key idea is to use a Kernel Regression model to represent the dependencies between position updates and the arrival times at bus stops. The performance of the proposed algorithm is evaluated on real data from the public bus transportation system in Dublin, Ireland. For a time horizon of 50 minutes, the prediction error of the algorithm is less than 10 percent on average. It clearly outperforms parametric methods which use a Linear Regression model, predictions based on the K-Nearest Neighbor algorithm, and a system which computes predictions of arrival times based on the current delay of buses. A study investigating the selection of interpolation points to reduce the size of the training set concludes the paper.</abstract><pub>IEEE</pub><doi>10.1109/ITSC.2012.6338767</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-0009 |
ispartof | 2012 15th International IEEE Conference on Intelligent Transportation Systems, 2012, p.1227-1232 |
issn | 2153-0009 2153-0017 |
language | eng |
recordid | cdi_ieee_primary_6338767 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Delay Interpolation Kernel Linear regression Prediction algorithms Training Trajectory |
title | Predicting arrival times of buses using real-time GPS measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Predicting%20arrival%20times%20of%20buses%20using%20real-time%20GPS%20measurements&rft.btitle=2012%2015th%20International%20IEEE%20Conference%20on%20Intelligent%20Transportation%20Systems&rft.au=Sinn,%20Mathieu&rft.date=2012-09&rft.spage=1227&rft.epage=1232&rft.pages=1227-1232&rft.issn=2153-0009&rft.eissn=2153-0017&rft.isbn=9781467330640&rft.isbn_list=1467330647&rft_id=info:doi/10.1109/ITSC.2012.6338767&rft_dat=%3Cieee_6IE%3E6338767%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467330633&rft.eisbn_list=9781467330626&rft.eisbn_list=1467330639&rft.eisbn_list=1467330620&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6338767&rfr_iscdi=true |