Predicting arrival times of buses using real-time GPS measurements

Predicting arrival times of buses is a key challenge in the context of building intelligent public transportation systems. In this paper, we describe an efficient non-parametric algorithm which provides highly accurate predictions based on real-time GPS measurements. The key idea is to use a Kernel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sinn, Mathieu, Yoon, Ji Won, Calabrese, Francesco, Bouillet, Eric
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1232
container_issue
container_start_page 1227
container_title
container_volume
creator Sinn, Mathieu
Yoon, Ji Won
Calabrese, Francesco
Bouillet, Eric
description Predicting arrival times of buses is a key challenge in the context of building intelligent public transportation systems. In this paper, we describe an efficient non-parametric algorithm which provides highly accurate predictions based on real-time GPS measurements. The key idea is to use a Kernel Regression model to represent the dependencies between position updates and the arrival times at bus stops. The performance of the proposed algorithm is evaluated on real data from the public bus transportation system in Dublin, Ireland. For a time horizon of 50 minutes, the prediction error of the algorithm is less than 10 percent on average. It clearly outperforms parametric methods which use a Linear Regression model, predictions based on the K-Nearest Neighbor algorithm, and a system which computes predictions of arrival times based on the current delay of buses. A study investigating the selection of interpolation points to reduce the size of the training set concludes the paper.
doi_str_mv 10.1109/ITSC.2012.6338767
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6338767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6338767</ieee_id><sourcerecordid>6338767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-164108f02c2b07d7695005dd386bafbc93660f3e5086e8eddfd8d2b331c708273</originalsourceid><addsrcrecordid>eNpVkF1LwzAYheMXOGZ_gHiTP9D6Jm-bpJda3BwMHGxej7R5I5V2StIK_ns7HIJX5-E8cC4OY7cCMiGgvF_ttlUmQchMIRqt9BlLSm1ErjQiTN05m0lRYAog9MU_l8Pln4PymiUxvk8ERphc6hl73ARybTO0hzduQ2i_bMeHtqfIPzyvxzjBGI8ykO3So-HLzZb3ZOMYqKfDEG_YlbddpOSUc_a6eNpVz-n6ZbmqHtZpIyUOqVC5AONBNrIG7bQqC4DCOTSqtr5uSlQKPFIBRpEh57wzTtaIotFgpMY5u_vdbYlo_xna3obv_ekR_AE8r07y</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Predicting arrival times of buses using real-time GPS measurements</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sinn, Mathieu ; Yoon, Ji Won ; Calabrese, Francesco ; Bouillet, Eric</creator><creatorcontrib>Sinn, Mathieu ; Yoon, Ji Won ; Calabrese, Francesco ; Bouillet, Eric</creatorcontrib><description>Predicting arrival times of buses is a key challenge in the context of building intelligent public transportation systems. In this paper, we describe an efficient non-parametric algorithm which provides highly accurate predictions based on real-time GPS measurements. The key idea is to use a Kernel Regression model to represent the dependencies between position updates and the arrival times at bus stops. The performance of the proposed algorithm is evaluated on real data from the public bus transportation system in Dublin, Ireland. For a time horizon of 50 minutes, the prediction error of the algorithm is less than 10 percent on average. It clearly outperforms parametric methods which use a Linear Regression model, predictions based on the K-Nearest Neighbor algorithm, and a system which computes predictions of arrival times based on the current delay of buses. A study investigating the selection of interpolation points to reduce the size of the training set concludes the paper.</description><identifier>ISSN: 2153-0009</identifier><identifier>ISBN: 9781467330640</identifier><identifier>ISBN: 1467330647</identifier><identifier>EISSN: 2153-0017</identifier><identifier>EISBN: 9781467330633</identifier><identifier>EISBN: 9781467330626</identifier><identifier>EISBN: 1467330639</identifier><identifier>EISBN: 1467330620</identifier><identifier>DOI: 10.1109/ITSC.2012.6338767</identifier><language>eng</language><publisher>IEEE</publisher><subject>Delay ; Interpolation ; Kernel ; Linear regression ; Prediction algorithms ; Training ; Trajectory</subject><ispartof>2012 15th International IEEE Conference on Intelligent Transportation Systems, 2012, p.1227-1232</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-164108f02c2b07d7695005dd386bafbc93660f3e5086e8eddfd8d2b331c708273</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6338767$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6338767$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sinn, Mathieu</creatorcontrib><creatorcontrib>Yoon, Ji Won</creatorcontrib><creatorcontrib>Calabrese, Francesco</creatorcontrib><creatorcontrib>Bouillet, Eric</creatorcontrib><title>Predicting arrival times of buses using real-time GPS measurements</title><title>2012 15th International IEEE Conference on Intelligent Transportation Systems</title><addtitle>ITSC</addtitle><description>Predicting arrival times of buses is a key challenge in the context of building intelligent public transportation systems. In this paper, we describe an efficient non-parametric algorithm which provides highly accurate predictions based on real-time GPS measurements. The key idea is to use a Kernel Regression model to represent the dependencies between position updates and the arrival times at bus stops. The performance of the proposed algorithm is evaluated on real data from the public bus transportation system in Dublin, Ireland. For a time horizon of 50 minutes, the prediction error of the algorithm is less than 10 percent on average. It clearly outperforms parametric methods which use a Linear Regression model, predictions based on the K-Nearest Neighbor algorithm, and a system which computes predictions of arrival times based on the current delay of buses. A study investigating the selection of interpolation points to reduce the size of the training set concludes the paper.</description><subject>Delay</subject><subject>Interpolation</subject><subject>Kernel</subject><subject>Linear regression</subject><subject>Prediction algorithms</subject><subject>Training</subject><subject>Trajectory</subject><issn>2153-0009</issn><issn>2153-0017</issn><isbn>9781467330640</isbn><isbn>1467330647</isbn><isbn>9781467330633</isbn><isbn>9781467330626</isbn><isbn>1467330639</isbn><isbn>1467330620</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkF1LwzAYheMXOGZ_gHiTP9D6Jm-bpJda3BwMHGxej7R5I5V2StIK_ns7HIJX5-E8cC4OY7cCMiGgvF_ttlUmQchMIRqt9BlLSm1ErjQiTN05m0lRYAog9MU_l8Pln4PymiUxvk8ERphc6hl73ARybTO0hzduQ2i_bMeHtqfIPzyvxzjBGI8ykO3So-HLzZb3ZOMYqKfDEG_YlbddpOSUc_a6eNpVz-n6ZbmqHtZpIyUOqVC5AONBNrIG7bQqC4DCOTSqtr5uSlQKPFIBRpEh57wzTtaIotFgpMY5u_vdbYlo_xna3obv_ekR_AE8r07y</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Sinn, Mathieu</creator><creator>Yoon, Ji Won</creator><creator>Calabrese, Francesco</creator><creator>Bouillet, Eric</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201209</creationdate><title>Predicting arrival times of buses using real-time GPS measurements</title><author>Sinn, Mathieu ; Yoon, Ji Won ; Calabrese, Francesco ; Bouillet, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-164108f02c2b07d7695005dd386bafbc93660f3e5086e8eddfd8d2b331c708273</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Delay</topic><topic>Interpolation</topic><topic>Kernel</topic><topic>Linear regression</topic><topic>Prediction algorithms</topic><topic>Training</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Sinn, Mathieu</creatorcontrib><creatorcontrib>Yoon, Ji Won</creatorcontrib><creatorcontrib>Calabrese, Francesco</creatorcontrib><creatorcontrib>Bouillet, Eric</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sinn, Mathieu</au><au>Yoon, Ji Won</au><au>Calabrese, Francesco</au><au>Bouillet, Eric</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Predicting arrival times of buses using real-time GPS measurements</atitle><btitle>2012 15th International IEEE Conference on Intelligent Transportation Systems</btitle><stitle>ITSC</stitle><date>2012-09</date><risdate>2012</risdate><spage>1227</spage><epage>1232</epage><pages>1227-1232</pages><issn>2153-0009</issn><eissn>2153-0017</eissn><isbn>9781467330640</isbn><isbn>1467330647</isbn><eisbn>9781467330633</eisbn><eisbn>9781467330626</eisbn><eisbn>1467330639</eisbn><eisbn>1467330620</eisbn><abstract>Predicting arrival times of buses is a key challenge in the context of building intelligent public transportation systems. In this paper, we describe an efficient non-parametric algorithm which provides highly accurate predictions based on real-time GPS measurements. The key idea is to use a Kernel Regression model to represent the dependencies between position updates and the arrival times at bus stops. The performance of the proposed algorithm is evaluated on real data from the public bus transportation system in Dublin, Ireland. For a time horizon of 50 minutes, the prediction error of the algorithm is less than 10 percent on average. It clearly outperforms parametric methods which use a Linear Regression model, predictions based on the K-Nearest Neighbor algorithm, and a system which computes predictions of arrival times based on the current delay of buses. A study investigating the selection of interpolation points to reduce the size of the training set concludes the paper.</abstract><pub>IEEE</pub><doi>10.1109/ITSC.2012.6338767</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0009
ispartof 2012 15th International IEEE Conference on Intelligent Transportation Systems, 2012, p.1227-1232
issn 2153-0009
2153-0017
language eng
recordid cdi_ieee_primary_6338767
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Delay
Interpolation
Kernel
Linear regression
Prediction algorithms
Training
Trajectory
title Predicting arrival times of buses using real-time GPS measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Predicting%20arrival%20times%20of%20buses%20using%20real-time%20GPS%20measurements&rft.btitle=2012%2015th%20International%20IEEE%20Conference%20on%20Intelligent%20Transportation%20Systems&rft.au=Sinn,%20Mathieu&rft.date=2012-09&rft.spage=1227&rft.epage=1232&rft.pages=1227-1232&rft.issn=2153-0009&rft.eissn=2153-0017&rft.isbn=9781467330640&rft.isbn_list=1467330647&rft_id=info:doi/10.1109/ITSC.2012.6338767&rft_dat=%3Cieee_6IE%3E6338767%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467330633&rft.eisbn_list=9781467330626&rft.eisbn_list=1467330639&rft.eisbn_list=1467330620&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6338767&rfr_iscdi=true