Efficient real time OD matrix estimation based on Principal Component Analysis
In this paper we explore the idea of dimensionality reduction and approximation of OD demand based on principal component analysis (PCA). First, we show how we can apply PCA to linearly transform the high dimensional OD matrices into the lower dimensional space without significant loss of accuracy....
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 121 |
---|---|
container_issue | |
container_start_page | 115 |
container_title | |
container_volume | |
creator | Djukic, Tamara Flotterod, Gunnar van Lint, Hans Hoogendoorn, Serge |
description | In this paper we explore the idea of dimensionality reduction and approximation of OD demand based on principal component analysis (PCA). First, we show how we can apply PCA to linearly transform the high dimensional OD matrices into the lower dimensional space without significant loss of accuracy. Next, we define a new transformed set of variables (demand principal components) that is used to represent the fixed structure of OD matrices in lower dimensional space. We update online these new variables from traffic counts in a novel reduced state space model for real time estimation of OD demand. Through an example we demonstrate the quality improvement of OD estimates using this new formulation and a so-called `colored' Kalman filter over the standard Kalman filter approach for OD estimation, when correlated measurement noise is accounted due to reduction of variables in state vector. |
doi_str_mv | 10.1109/ITSC.2012.6338720 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>swepub_6IE</sourceid><recordid>TN_cdi_ieee_primary_6338720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6338720</ieee_id><sourcerecordid>oai_DiVA_org_kth_116647</sourcerecordid><originalsourceid>FETCH-LOGICAL-i256t-59055d1f1ef4de289ed178ee9ce3bda7c335448645a6a0310aeb373d233946f03</originalsourceid><addsrcrecordid>eNpVkF9LwzAUxeM_cMx9APElX6AzyU2T9HF0UwfDCU5fS9rearRrS1PRfXsjGwOf7uGc370cLiHXnE05Z8ntcvOcTgXjYqoAjBbshEwSbbhUGoAF75SMBI8hYozrs3-ZZOfHjCWXZOL9R1DMcCOFHpHHRVW5wmEz0B5tTQe3Rbqe060devdD0QfDDq5taG49ljSIp941hesCnLbbrm3-dmeNrXfe-StyUdna4-Qwx-TlbrFJH6LV-n6ZzlaRE7EaojhhcVzyimMlSxQmwZJrg5gUCHlpdQEQS2mUjK2yDDizmIOGUgAkUlUMxiTa3_Xf2H3lWdeHmv0ua63L5u51lrX9W_Y5vGecKyV14G_2vEPEI334JvwCD9hjgA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Efficient real time OD matrix estimation based on Principal Component Analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Djukic, Tamara ; Flotterod, Gunnar ; van Lint, Hans ; Hoogendoorn, Serge</creator><creatorcontrib>Djukic, Tamara ; Flotterod, Gunnar ; van Lint, Hans ; Hoogendoorn, Serge</creatorcontrib><description>In this paper we explore the idea of dimensionality reduction and approximation of OD demand based on principal component analysis (PCA). First, we show how we can apply PCA to linearly transform the high dimensional OD matrices into the lower dimensional space without significant loss of accuracy. Next, we define a new transformed set of variables (demand principal components) that is used to represent the fixed structure of OD matrices in lower dimensional space. We update online these new variables from traffic counts in a novel reduced state space model for real time estimation of OD demand. Through an example we demonstrate the quality improvement of OD estimates using this new formulation and a so-called `colored' Kalman filter over the standard Kalman filter approach for OD estimation, when correlated measurement noise is accounted due to reduction of variables in state vector.</description><identifier>ISSN: 2153-0009</identifier><identifier>ISBN: 9781467330640</identifier><identifier>ISBN: 1467330647</identifier><identifier>ISBN: 9781467330633</identifier><identifier>ISBN: 1467330639</identifier><identifier>EISSN: 2153-0017</identifier><identifier>EISBN: 9781467330633</identifier><identifier>EISBN: 9781467330626</identifier><identifier>EISBN: 1467330639</identifier><identifier>EISBN: 1467330620</identifier><identifier>DOI: 10.1109/ITSC.2012.6338720</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic Vehicle Identification ; Covariance matrix ; Kalman filters ; Noise ; Noise measurement ; Origin-Destination Estimation ; Prediction ; Principal component analysis ; Vectors</subject><ispartof>2012 15th International IEEE Conference on Intelligent Transportation Systems, 2012, p.115-121</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6338720$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,780,784,789,790,885,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6338720$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-116647$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Djukic, Tamara</creatorcontrib><creatorcontrib>Flotterod, Gunnar</creatorcontrib><creatorcontrib>van Lint, Hans</creatorcontrib><creatorcontrib>Hoogendoorn, Serge</creatorcontrib><title>Efficient real time OD matrix estimation based on Principal Component Analysis</title><title>2012 15th International IEEE Conference on Intelligent Transportation Systems</title><addtitle>ITSC</addtitle><description>In this paper we explore the idea of dimensionality reduction and approximation of OD demand based on principal component analysis (PCA). First, we show how we can apply PCA to linearly transform the high dimensional OD matrices into the lower dimensional space without significant loss of accuracy. Next, we define a new transformed set of variables (demand principal components) that is used to represent the fixed structure of OD matrices in lower dimensional space. We update online these new variables from traffic counts in a novel reduced state space model for real time estimation of OD demand. Through an example we demonstrate the quality improvement of OD estimates using this new formulation and a so-called `colored' Kalman filter over the standard Kalman filter approach for OD estimation, when correlated measurement noise is accounted due to reduction of variables in state vector.</description><subject>Automatic Vehicle Identification</subject><subject>Covariance matrix</subject><subject>Kalman filters</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Origin-Destination Estimation</subject><subject>Prediction</subject><subject>Principal component analysis</subject><subject>Vectors</subject><issn>2153-0009</issn><issn>2153-0017</issn><isbn>9781467330640</isbn><isbn>1467330647</isbn><isbn>9781467330633</isbn><isbn>1467330639</isbn><isbn>9781467330633</isbn><isbn>9781467330626</isbn><isbn>1467330639</isbn><isbn>1467330620</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkF9LwzAUxeM_cMx9APElX6AzyU2T9HF0UwfDCU5fS9rearRrS1PRfXsjGwOf7uGc370cLiHXnE05Z8ntcvOcTgXjYqoAjBbshEwSbbhUGoAF75SMBI8hYozrs3-ZZOfHjCWXZOL9R1DMcCOFHpHHRVW5wmEz0B5tTQe3Rbqe060devdD0QfDDq5taG49ljSIp941hesCnLbbrm3-dmeNrXfe-StyUdna4-Qwx-TlbrFJH6LV-n6ZzlaRE7EaojhhcVzyimMlSxQmwZJrg5gUCHlpdQEQS2mUjK2yDDizmIOGUgAkUlUMxiTa3_Xf2H3lWdeHmv0ua63L5u51lrX9W_Y5vGecKyV14G_2vEPEI334JvwCD9hjgA</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Djukic, Tamara</creator><creator>Flotterod, Gunnar</creator><creator>van Lint, Hans</creator><creator>Hoogendoorn, Serge</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>ADTPV</scope><scope>BNKNJ</scope><scope>D8V</scope></search><sort><creationdate>20120101</creationdate><title>Efficient real time OD matrix estimation based on Principal Component Analysis</title><author>Djukic, Tamara ; Flotterod, Gunnar ; van Lint, Hans ; Hoogendoorn, Serge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i256t-59055d1f1ef4de289ed178ee9ce3bda7c335448645a6a0310aeb373d233946f03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Automatic Vehicle Identification</topic><topic>Covariance matrix</topic><topic>Kalman filters</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Origin-Destination Estimation</topic><topic>Prediction</topic><topic>Principal component analysis</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Djukic, Tamara</creatorcontrib><creatorcontrib>Flotterod, Gunnar</creatorcontrib><creatorcontrib>van Lint, Hans</creatorcontrib><creatorcontrib>Hoogendoorn, Serge</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>SwePub</collection><collection>SwePub Conference</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Djukic, Tamara</au><au>Flotterod, Gunnar</au><au>van Lint, Hans</au><au>Hoogendoorn, Serge</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Efficient real time OD matrix estimation based on Principal Component Analysis</atitle><btitle>2012 15th International IEEE Conference on Intelligent Transportation Systems</btitle><stitle>ITSC</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>115</spage><epage>121</epage><pages>115-121</pages><issn>2153-0009</issn><eissn>2153-0017</eissn><isbn>9781467330640</isbn><isbn>1467330647</isbn><isbn>9781467330633</isbn><isbn>1467330639</isbn><eisbn>9781467330633</eisbn><eisbn>9781467330626</eisbn><eisbn>1467330639</eisbn><eisbn>1467330620</eisbn><abstract>In this paper we explore the idea of dimensionality reduction and approximation of OD demand based on principal component analysis (PCA). First, we show how we can apply PCA to linearly transform the high dimensional OD matrices into the lower dimensional space without significant loss of accuracy. Next, we define a new transformed set of variables (demand principal components) that is used to represent the fixed structure of OD matrices in lower dimensional space. We update online these new variables from traffic counts in a novel reduced state space model for real time estimation of OD demand. Through an example we demonstrate the quality improvement of OD estimates using this new formulation and a so-called `colored' Kalman filter over the standard Kalman filter approach for OD estimation, when correlated measurement noise is accounted due to reduction of variables in state vector.</abstract><pub>IEEE</pub><doi>10.1109/ITSC.2012.6338720</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-0009 |
ispartof | 2012 15th International IEEE Conference on Intelligent Transportation Systems, 2012, p.115-121 |
issn | 2153-0009 2153-0017 |
language | eng |
recordid | cdi_ieee_primary_6338720 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Automatic Vehicle Identification Covariance matrix Kalman filters Noise Noise measurement Origin-Destination Estimation Prediction Principal component analysis Vectors |
title | Efficient real time OD matrix estimation based on Principal Component Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T03%3A16%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Efficient%20real%20time%20OD%20matrix%20estimation%20based%20on%20Principal%20Component%20Analysis&rft.btitle=2012%2015th%20International%20IEEE%20Conference%20on%20Intelligent%20Transportation%20Systems&rft.au=Djukic,%20Tamara&rft.date=2012-01-01&rft.spage=115&rft.epage=121&rft.pages=115-121&rft.issn=2153-0009&rft.eissn=2153-0017&rft.isbn=9781467330640&rft.isbn_list=1467330647&rft.isbn_list=9781467330633&rft.isbn_list=1467330639&rft_id=info:doi/10.1109/ITSC.2012.6338720&rft_dat=%3Cswepub_6IE%3Eoai_DiVA_org_kth_116647%3C/swepub_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467330633&rft.eisbn_list=9781467330626&rft.eisbn_list=1467330639&rft.eisbn_list=1467330620&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6338720&rfr_iscdi=true |