Efficient real time OD matrix estimation based on Principal Component Analysis

In this paper we explore the idea of dimensionality reduction and approximation of OD demand based on principal component analysis (PCA). First, we show how we can apply PCA to linearly transform the high dimensional OD matrices into the lower dimensional space without significant loss of accuracy....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Djukic, Tamara, Flotterod, Gunnar, van Lint, Hans, Hoogendoorn, Serge
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121
container_issue
container_start_page 115
container_title
container_volume
creator Djukic, Tamara
Flotterod, Gunnar
van Lint, Hans
Hoogendoorn, Serge
description In this paper we explore the idea of dimensionality reduction and approximation of OD demand based on principal component analysis (PCA). First, we show how we can apply PCA to linearly transform the high dimensional OD matrices into the lower dimensional space without significant loss of accuracy. Next, we define a new transformed set of variables (demand principal components) that is used to represent the fixed structure of OD matrices in lower dimensional space. We update online these new variables from traffic counts in a novel reduced state space model for real time estimation of OD demand. Through an example we demonstrate the quality improvement of OD estimates using this new formulation and a so-called `colored' Kalman filter over the standard Kalman filter approach for OD estimation, when correlated measurement noise is accounted due to reduction of variables in state vector.
doi_str_mv 10.1109/ITSC.2012.6338720
format Conference Proceeding
fullrecord <record><control><sourceid>swepub_6IE</sourceid><recordid>TN_cdi_ieee_primary_6338720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6338720</ieee_id><sourcerecordid>oai_DiVA_org_kth_116647</sourcerecordid><originalsourceid>FETCH-LOGICAL-i256t-59055d1f1ef4de289ed178ee9ce3bda7c335448645a6a0310aeb373d233946f03</originalsourceid><addsrcrecordid>eNpVkF9LwzAUxeM_cMx9APElX6AzyU2T9HF0UwfDCU5fS9rearRrS1PRfXsjGwOf7uGc370cLiHXnE05Z8ntcvOcTgXjYqoAjBbshEwSbbhUGoAF75SMBI8hYozrs3-ZZOfHjCWXZOL9R1DMcCOFHpHHRVW5wmEz0B5tTQe3Rbqe060devdD0QfDDq5taG49ljSIp941hesCnLbbrm3-dmeNrXfe-StyUdna4-Qwx-TlbrFJH6LV-n6ZzlaRE7EaojhhcVzyimMlSxQmwZJrg5gUCHlpdQEQS2mUjK2yDDizmIOGUgAkUlUMxiTa3_Xf2H3lWdeHmv0ua63L5u51lrX9W_Y5vGecKyV14G_2vEPEI334JvwCD9hjgA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Efficient real time OD matrix estimation based on Principal Component Analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Djukic, Tamara ; Flotterod, Gunnar ; van Lint, Hans ; Hoogendoorn, Serge</creator><creatorcontrib>Djukic, Tamara ; Flotterod, Gunnar ; van Lint, Hans ; Hoogendoorn, Serge</creatorcontrib><description>In this paper we explore the idea of dimensionality reduction and approximation of OD demand based on principal component analysis (PCA). First, we show how we can apply PCA to linearly transform the high dimensional OD matrices into the lower dimensional space without significant loss of accuracy. Next, we define a new transformed set of variables (demand principal components) that is used to represent the fixed structure of OD matrices in lower dimensional space. We update online these new variables from traffic counts in a novel reduced state space model for real time estimation of OD demand. Through an example we demonstrate the quality improvement of OD estimates using this new formulation and a so-called `colored' Kalman filter over the standard Kalman filter approach for OD estimation, when correlated measurement noise is accounted due to reduction of variables in state vector.</description><identifier>ISSN: 2153-0009</identifier><identifier>ISBN: 9781467330640</identifier><identifier>ISBN: 1467330647</identifier><identifier>ISBN: 9781467330633</identifier><identifier>ISBN: 1467330639</identifier><identifier>EISSN: 2153-0017</identifier><identifier>EISBN: 9781467330633</identifier><identifier>EISBN: 9781467330626</identifier><identifier>EISBN: 1467330639</identifier><identifier>EISBN: 1467330620</identifier><identifier>DOI: 10.1109/ITSC.2012.6338720</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic Vehicle Identification ; Covariance matrix ; Kalman filters ; Noise ; Noise measurement ; Origin-Destination Estimation ; Prediction ; Principal component analysis ; Vectors</subject><ispartof>2012 15th International IEEE Conference on Intelligent Transportation Systems, 2012, p.115-121</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6338720$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,780,784,789,790,885,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6338720$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-116647$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Djukic, Tamara</creatorcontrib><creatorcontrib>Flotterod, Gunnar</creatorcontrib><creatorcontrib>van Lint, Hans</creatorcontrib><creatorcontrib>Hoogendoorn, Serge</creatorcontrib><title>Efficient real time OD matrix estimation based on Principal Component Analysis</title><title>2012 15th International IEEE Conference on Intelligent Transportation Systems</title><addtitle>ITSC</addtitle><description>In this paper we explore the idea of dimensionality reduction and approximation of OD demand based on principal component analysis (PCA). First, we show how we can apply PCA to linearly transform the high dimensional OD matrices into the lower dimensional space without significant loss of accuracy. Next, we define a new transformed set of variables (demand principal components) that is used to represent the fixed structure of OD matrices in lower dimensional space. We update online these new variables from traffic counts in a novel reduced state space model for real time estimation of OD demand. Through an example we demonstrate the quality improvement of OD estimates using this new formulation and a so-called `colored' Kalman filter over the standard Kalman filter approach for OD estimation, when correlated measurement noise is accounted due to reduction of variables in state vector.</description><subject>Automatic Vehicle Identification</subject><subject>Covariance matrix</subject><subject>Kalman filters</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Origin-Destination Estimation</subject><subject>Prediction</subject><subject>Principal component analysis</subject><subject>Vectors</subject><issn>2153-0009</issn><issn>2153-0017</issn><isbn>9781467330640</isbn><isbn>1467330647</isbn><isbn>9781467330633</isbn><isbn>1467330639</isbn><isbn>9781467330633</isbn><isbn>9781467330626</isbn><isbn>1467330639</isbn><isbn>1467330620</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkF9LwzAUxeM_cMx9APElX6AzyU2T9HF0UwfDCU5fS9rearRrS1PRfXsjGwOf7uGc370cLiHXnE05Z8ntcvOcTgXjYqoAjBbshEwSbbhUGoAF75SMBI8hYozrs3-ZZOfHjCWXZOL9R1DMcCOFHpHHRVW5wmEz0B5tTQe3Rbqe060devdD0QfDDq5taG49ljSIp941hesCnLbbrm3-dmeNrXfe-StyUdna4-Qwx-TlbrFJH6LV-n6ZzlaRE7EaojhhcVzyimMlSxQmwZJrg5gUCHlpdQEQS2mUjK2yDDizmIOGUgAkUlUMxiTa3_Xf2H3lWdeHmv0ua63L5u51lrX9W_Y5vGecKyV14G_2vEPEI334JvwCD9hjgA</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Djukic, Tamara</creator><creator>Flotterod, Gunnar</creator><creator>van Lint, Hans</creator><creator>Hoogendoorn, Serge</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>ADTPV</scope><scope>BNKNJ</scope><scope>D8V</scope></search><sort><creationdate>20120101</creationdate><title>Efficient real time OD matrix estimation based on Principal Component Analysis</title><author>Djukic, Tamara ; Flotterod, Gunnar ; van Lint, Hans ; Hoogendoorn, Serge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i256t-59055d1f1ef4de289ed178ee9ce3bda7c335448645a6a0310aeb373d233946f03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Automatic Vehicle Identification</topic><topic>Covariance matrix</topic><topic>Kalman filters</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Origin-Destination Estimation</topic><topic>Prediction</topic><topic>Principal component analysis</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Djukic, Tamara</creatorcontrib><creatorcontrib>Flotterod, Gunnar</creatorcontrib><creatorcontrib>van Lint, Hans</creatorcontrib><creatorcontrib>Hoogendoorn, Serge</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>SwePub</collection><collection>SwePub Conference</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Djukic, Tamara</au><au>Flotterod, Gunnar</au><au>van Lint, Hans</au><au>Hoogendoorn, Serge</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Efficient real time OD matrix estimation based on Principal Component Analysis</atitle><btitle>2012 15th International IEEE Conference on Intelligent Transportation Systems</btitle><stitle>ITSC</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>115</spage><epage>121</epage><pages>115-121</pages><issn>2153-0009</issn><eissn>2153-0017</eissn><isbn>9781467330640</isbn><isbn>1467330647</isbn><isbn>9781467330633</isbn><isbn>1467330639</isbn><eisbn>9781467330633</eisbn><eisbn>9781467330626</eisbn><eisbn>1467330639</eisbn><eisbn>1467330620</eisbn><abstract>In this paper we explore the idea of dimensionality reduction and approximation of OD demand based on principal component analysis (PCA). First, we show how we can apply PCA to linearly transform the high dimensional OD matrices into the lower dimensional space without significant loss of accuracy. Next, we define a new transformed set of variables (demand principal components) that is used to represent the fixed structure of OD matrices in lower dimensional space. We update online these new variables from traffic counts in a novel reduced state space model for real time estimation of OD demand. Through an example we demonstrate the quality improvement of OD estimates using this new formulation and a so-called `colored' Kalman filter over the standard Kalman filter approach for OD estimation, when correlated measurement noise is accounted due to reduction of variables in state vector.</abstract><pub>IEEE</pub><doi>10.1109/ITSC.2012.6338720</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0009
ispartof 2012 15th International IEEE Conference on Intelligent Transportation Systems, 2012, p.115-121
issn 2153-0009
2153-0017
language eng
recordid cdi_ieee_primary_6338720
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automatic Vehicle Identification
Covariance matrix
Kalman filters
Noise
Noise measurement
Origin-Destination Estimation
Prediction
Principal component analysis
Vectors
title Efficient real time OD matrix estimation based on Principal Component Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T03%3A16%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Efficient%20real%20time%20OD%20matrix%20estimation%20based%20on%20Principal%20Component%20Analysis&rft.btitle=2012%2015th%20International%20IEEE%20Conference%20on%20Intelligent%20Transportation%20Systems&rft.au=Djukic,%20Tamara&rft.date=2012-01-01&rft.spage=115&rft.epage=121&rft.pages=115-121&rft.issn=2153-0009&rft.eissn=2153-0017&rft.isbn=9781467330640&rft.isbn_list=1467330647&rft.isbn_list=9781467330633&rft.isbn_list=1467330639&rft_id=info:doi/10.1109/ITSC.2012.6338720&rft_dat=%3Cswepub_6IE%3Eoai_DiVA_org_kth_116647%3C/swepub_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467330633&rft.eisbn_list=9781467330626&rft.eisbn_list=1467330639&rft.eisbn_list=1467330620&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6338720&rfr_iscdi=true