A Generic Concept of a System for Predicting Driving Behaviors
Today, many vehicles are equipped with Advanced Driver Assistance Systems (ADAS) to warn the driver about the potential danger of a scene, but in some situations the warning is not early enough to avoid an accident. A solution for preparing the driver and giving him the time to react to such dangero...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1808 |
---|---|
container_issue | |
container_start_page | 1803 |
container_title | |
container_volume | |
creator | Bonnin, Sarah Kummert, Franz Schmudderich, Jens |
description | Today, many vehicles are equipped with Advanced Driver Assistance Systems (ADAS) to warn the driver about the potential danger of a scene, but in some situations the warning is not early enough to avoid an accident. A solution for preparing the driver and giving him the time to react to such dangerous events is to predict the behavior of other traffic participants. This paper describes a method to predict the behavior of the surrounding vehicles by a classification approach. However, the behavior alternatives strongly depend on the scenario faced by the target vehicle. Where most of the state-of-the-art approaches focus on a single scenario, the concept presented in this paper aims at a generic solution, allowing for behavior prediction for a large amount of different scenes. The idea of the method is to categorize scenes into a hierarchy from the most generic ones in the top nodes to the most specific ones in the leaves. Every node of the hierarchy is a scene containing a set of classifiers to predict the possible behaviors. GPS and digital maps provide the static information about the infrastructure, which is used to determine the nodes fitting to the current situation. As a first step this paper shows accurate prediction of traffic participants behavior in highway entrance situations for a prediction horizon of up to 3 seconds. |
doi_str_mv | 10.1109/ITSC.2012.6338695 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6338695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6338695</ieee_id><sourcerecordid>6338695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-f061d2b531b727171153c4762cd7f6c12dc2af4cebe84ea9686e2e6bf7d51b9c3</originalsourceid><addsrcrecordid>eNpVkF1LwzAYheMXOGZ_gHiTP9CaN0nzcSPMqnMwUNi8Hmn6RiOuHWkZ7N9bcQhencN54HA4hFwDKwCYvV2sV1XBGfBCCWGULU9IZrUBqbQQbMxOyYRDKXLGQJ_9Y5Kd_zFmL0nW95-jYwaM5HpC7mZ0ji2m6GnVtR53A-0CdXR16Afc0tAl-pqwiX6I7Tt9SHH_o_f44faxS_0VuQjuq8fsqFPy9vS4rp7z5ct8Uc2WuedcDHlgChpelwJqzTVoGAd5qRX3jQ7KA288d0F6rNFIdFYZhRxVHXRTQm29mJKb396IiJtdiluXDpvjG-IbS3ZNXA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Generic Concept of a System for Predicting Driving Behaviors</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bonnin, Sarah ; Kummert, Franz ; Schmudderich, Jens</creator><creatorcontrib>Bonnin, Sarah ; Kummert, Franz ; Schmudderich, Jens</creatorcontrib><description>Today, many vehicles are equipped with Advanced Driver Assistance Systems (ADAS) to warn the driver about the potential danger of a scene, but in some situations the warning is not early enough to avoid an accident. A solution for preparing the driver and giving him the time to react to such dangerous events is to predict the behavior of other traffic participants. This paper describes a method to predict the behavior of the surrounding vehicles by a classification approach. However, the behavior alternatives strongly depend on the scenario faced by the target vehicle. Where most of the state-of-the-art approaches focus on a single scenario, the concept presented in this paper aims at a generic solution, allowing for behavior prediction for a large amount of different scenes. The idea of the method is to categorize scenes into a hierarchy from the most generic ones in the top nodes to the most specific ones in the leaves. Every node of the hierarchy is a scene containing a set of classifiers to predict the possible behaviors. GPS and digital maps provide the static information about the infrastructure, which is used to determine the nodes fitting to the current situation. As a first step this paper shows accurate prediction of traffic participants behavior in highway entrance situations for a prediction horizon of up to 3 seconds.</description><identifier>ISSN: 2153-0009</identifier><identifier>ISBN: 9781467330640</identifier><identifier>ISBN: 1467330647</identifier><identifier>EISSN: 2153-0017</identifier><identifier>EISBN: 9781467330633</identifier><identifier>EISBN: 9781467330626</identifier><identifier>EISBN: 1467330639</identifier><identifier>EISBN: 1467330620</identifier><identifier>DOI: 10.1109/ITSC.2012.6338695</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Context ; Merging ; Predictive models ; Road transportation ; Vectors ; Vehicles</subject><ispartof>2012 15th International IEEE Conference on Intelligent Transportation Systems, 2012, p.1803-1808</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-f061d2b531b727171153c4762cd7f6c12dc2af4cebe84ea9686e2e6bf7d51b9c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6338695$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6338695$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bonnin, Sarah</creatorcontrib><creatorcontrib>Kummert, Franz</creatorcontrib><creatorcontrib>Schmudderich, Jens</creatorcontrib><title>A Generic Concept of a System for Predicting Driving Behaviors</title><title>2012 15th International IEEE Conference on Intelligent Transportation Systems</title><addtitle>ITSC</addtitle><description>Today, many vehicles are equipped with Advanced Driver Assistance Systems (ADAS) to warn the driver about the potential danger of a scene, but in some situations the warning is not early enough to avoid an accident. A solution for preparing the driver and giving him the time to react to such dangerous events is to predict the behavior of other traffic participants. This paper describes a method to predict the behavior of the surrounding vehicles by a classification approach. However, the behavior alternatives strongly depend on the scenario faced by the target vehicle. Where most of the state-of-the-art approaches focus on a single scenario, the concept presented in this paper aims at a generic solution, allowing for behavior prediction for a large amount of different scenes. The idea of the method is to categorize scenes into a hierarchy from the most generic ones in the top nodes to the most specific ones in the leaves. Every node of the hierarchy is a scene containing a set of classifiers to predict the possible behaviors. GPS and digital maps provide the static information about the infrastructure, which is used to determine the nodes fitting to the current situation. As a first step this paper shows accurate prediction of traffic participants behavior in highway entrance situations for a prediction horizon of up to 3 seconds.</description><subject>Computational modeling</subject><subject>Context</subject><subject>Merging</subject><subject>Predictive models</subject><subject>Road transportation</subject><subject>Vectors</subject><subject>Vehicles</subject><issn>2153-0009</issn><issn>2153-0017</issn><isbn>9781467330640</isbn><isbn>1467330647</isbn><isbn>9781467330633</isbn><isbn>9781467330626</isbn><isbn>1467330639</isbn><isbn>1467330620</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkF1LwzAYheMXOGZ_gHiTP9CaN0nzcSPMqnMwUNi8Hmn6RiOuHWkZ7N9bcQhencN54HA4hFwDKwCYvV2sV1XBGfBCCWGULU9IZrUBqbQQbMxOyYRDKXLGQJ_9Y5Kd_zFmL0nW95-jYwaM5HpC7mZ0ji2m6GnVtR53A-0CdXR16Afc0tAl-pqwiX6I7Tt9SHH_o_f44faxS_0VuQjuq8fsqFPy9vS4rp7z5ct8Uc2WuedcDHlgChpelwJqzTVoGAd5qRX3jQ7KA288d0F6rNFIdFYZhRxVHXRTQm29mJKb396IiJtdiluXDpvjG-IbS3ZNXA</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Bonnin, Sarah</creator><creator>Kummert, Franz</creator><creator>Schmudderich, Jens</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201209</creationdate><title>A Generic Concept of a System for Predicting Driving Behaviors</title><author>Bonnin, Sarah ; Kummert, Franz ; Schmudderich, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-f061d2b531b727171153c4762cd7f6c12dc2af4cebe84ea9686e2e6bf7d51b9c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computational modeling</topic><topic>Context</topic><topic>Merging</topic><topic>Predictive models</topic><topic>Road transportation</topic><topic>Vectors</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Bonnin, Sarah</creatorcontrib><creatorcontrib>Kummert, Franz</creatorcontrib><creatorcontrib>Schmudderich, Jens</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bonnin, Sarah</au><au>Kummert, Franz</au><au>Schmudderich, Jens</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Generic Concept of a System for Predicting Driving Behaviors</atitle><btitle>2012 15th International IEEE Conference on Intelligent Transportation Systems</btitle><stitle>ITSC</stitle><date>2012-09</date><risdate>2012</risdate><spage>1803</spage><epage>1808</epage><pages>1803-1808</pages><issn>2153-0009</issn><eissn>2153-0017</eissn><isbn>9781467330640</isbn><isbn>1467330647</isbn><eisbn>9781467330633</eisbn><eisbn>9781467330626</eisbn><eisbn>1467330639</eisbn><eisbn>1467330620</eisbn><abstract>Today, many vehicles are equipped with Advanced Driver Assistance Systems (ADAS) to warn the driver about the potential danger of a scene, but in some situations the warning is not early enough to avoid an accident. A solution for preparing the driver and giving him the time to react to such dangerous events is to predict the behavior of other traffic participants. This paper describes a method to predict the behavior of the surrounding vehicles by a classification approach. However, the behavior alternatives strongly depend on the scenario faced by the target vehicle. Where most of the state-of-the-art approaches focus on a single scenario, the concept presented in this paper aims at a generic solution, allowing for behavior prediction for a large amount of different scenes. The idea of the method is to categorize scenes into a hierarchy from the most generic ones in the top nodes to the most specific ones in the leaves. Every node of the hierarchy is a scene containing a set of classifiers to predict the possible behaviors. GPS and digital maps provide the static information about the infrastructure, which is used to determine the nodes fitting to the current situation. As a first step this paper shows accurate prediction of traffic participants behavior in highway entrance situations for a prediction horizon of up to 3 seconds.</abstract><pub>IEEE</pub><doi>10.1109/ITSC.2012.6338695</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-0009 |
ispartof | 2012 15th International IEEE Conference on Intelligent Transportation Systems, 2012, p.1803-1808 |
issn | 2153-0009 2153-0017 |
language | eng |
recordid | cdi_ieee_primary_6338695 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computational modeling Context Merging Predictive models Road transportation Vectors Vehicles |
title | A Generic Concept of a System for Predicting Driving Behaviors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T17%3A13%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Generic%20Concept%20of%20a%20System%20for%20Predicting%20Driving%20Behaviors&rft.btitle=2012%2015th%20International%20IEEE%20Conference%20on%20Intelligent%20Transportation%20Systems&rft.au=Bonnin,%20Sarah&rft.date=2012-09&rft.spage=1803&rft.epage=1808&rft.pages=1803-1808&rft.issn=2153-0009&rft.eissn=2153-0017&rft.isbn=9781467330640&rft.isbn_list=1467330647&rft_id=info:doi/10.1109/ITSC.2012.6338695&rft_dat=%3Cieee_6IE%3E6338695%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467330633&rft.eisbn_list=9781467330626&rft.eisbn_list=1467330639&rft.eisbn_list=1467330620&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6338695&rfr_iscdi=true |