Optimized Directional Content Distribution Using Reputation
Word of mouth represents, from historical times, a powerful mechanism employed within human societies for influencing the behavior of their members. Translated into the computational world, the same feedback mechanism preserves or even broadens its impact. This paper presents an intriguing perspecti...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 629 |
---|---|
container_issue | |
container_start_page | 624 |
container_title | |
container_volume | |
creator | Urzica, A. Bardac, M. |
description | Word of mouth represents, from historical times, a powerful mechanism employed within human societies for influencing the behavior of their members. Translated into the computational world, the same feedback mechanism preserves or even broadens its impact. This paper presents an intriguing perspective on using reputation systems: reputation is gained by complying with the norms and norms are modified by the agents with high reputation. The aim of the model proposed by this paper is to optimize content distribution within a system. The model achieves this goal by prioritizing the preferences of the highest reputed agents. The reputation of an agent is translated into the influence it gains in altering system norms. The computational reputation model proposed requires minimum resources being thus well suited for agents running on mobile devices. Being completely decentralized, the interaction architecture provided by the model offers a high degree of scalability. |
doi_str_mv | 10.1109/iNCoS.2012.100 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6337995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6337995</ieee_id><sourcerecordid>6337995</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-4673e430100ea9ec81aee7451295cdd0cbbef6a5a2732f8276960b00dda396453</originalsourceid><addsrcrecordid>eNpNjz1PwzAQho0QEqjNysKSP5Bw_og_xIQCFKSqlaDMlRNfkFGbRLE7wK_HEQzccrpneO95CbmmUFIK5tZv6uGtZEBZSQHOSGaUpkIqzpim7Pz_rYy5JFkIn5BGUy2YuCJ32zH6o_9Glz_4Cdvoh94e8nroI_YxsRAn35xmnL8H33_krzieop3Bklx09hAw-9sLsnt63NXPxXq7eqnv14U3EIv5OQoOSQ-twVZTi6hERZmpWuegbRrspK0sS5KdZkoaCQ2Ac5YbKSq-IDe_sR4R9-Pkj3b62kvOU6GK_wB3OkkN</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimized Directional Content Distribution Using Reputation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Urzica, A. ; Bardac, M.</creator><creatorcontrib>Urzica, A. ; Bardac, M.</creatorcontrib><description>Word of mouth represents, from historical times, a powerful mechanism employed within human societies for influencing the behavior of their members. Translated into the computational world, the same feedback mechanism preserves or even broadens its impact. This paper presents an intriguing perspective on using reputation systems: reputation is gained by complying with the norms and norms are modified by the agents with high reputation. The aim of the model proposed by this paper is to optimize content distribution within a system. The model achieves this goal by prioritizing the preferences of the highest reputed agents. The reputation of an agent is translated into the influence it gains in altering system norms. The computational reputation model proposed requires minimum resources being thus well suited for agents running on mobile devices. Being completely decentralized, the interaction architecture provided by the model offers a high degree of scalability.</description><identifier>ISBN: 9781467322799</identifier><identifier>ISBN: 1467322792</identifier><identifier>EISBN: 9781467322812</identifier><identifier>EISBN: 9780769548081</identifier><identifier>EISBN: 1467322814</identifier><identifier>EISBN: 0769548083</identifier><identifier>DOI: 10.1109/iNCoS.2012.100</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Availability ; Computational modeling ; Content replication ; Humans ; Mobile communication ; Norms ; Reputation ; Robustness ; Rocks</subject><ispartof>2012 Fourth International Conference on Intelligent Networking and Collaborative Systems, 2012, p.624-629</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6337995$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6337995$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Urzica, A.</creatorcontrib><creatorcontrib>Bardac, M.</creatorcontrib><title>Optimized Directional Content Distribution Using Reputation</title><title>2012 Fourth International Conference on Intelligent Networking and Collaborative Systems</title><addtitle>incos</addtitle><description>Word of mouth represents, from historical times, a powerful mechanism employed within human societies for influencing the behavior of their members. Translated into the computational world, the same feedback mechanism preserves or even broadens its impact. This paper presents an intriguing perspective on using reputation systems: reputation is gained by complying with the norms and norms are modified by the agents with high reputation. The aim of the model proposed by this paper is to optimize content distribution within a system. The model achieves this goal by prioritizing the preferences of the highest reputed agents. The reputation of an agent is translated into the influence it gains in altering system norms. The computational reputation model proposed requires minimum resources being thus well suited for agents running on mobile devices. Being completely decentralized, the interaction architecture provided by the model offers a high degree of scalability.</description><subject>Availability</subject><subject>Computational modeling</subject><subject>Content replication</subject><subject>Humans</subject><subject>Mobile communication</subject><subject>Norms</subject><subject>Reputation</subject><subject>Robustness</subject><subject>Rocks</subject><isbn>9781467322799</isbn><isbn>1467322792</isbn><isbn>9781467322812</isbn><isbn>9780769548081</isbn><isbn>1467322814</isbn><isbn>0769548083</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNjz1PwzAQho0QEqjNysKSP5Bw_og_xIQCFKSqlaDMlRNfkFGbRLE7wK_HEQzccrpneO95CbmmUFIK5tZv6uGtZEBZSQHOSGaUpkIqzpim7Pz_rYy5JFkIn5BGUy2YuCJ32zH6o_9Glz_4Cdvoh94e8nroI_YxsRAn35xmnL8H33_krzieop3Bklx09hAw-9sLsnt63NXPxXq7eqnv14U3EIv5OQoOSQ-twVZTi6hERZmpWuegbRrspK0sS5KdZkoaCQ2Ac5YbKSq-IDe_sR4R9-Pkj3b62kvOU6GK_wB3OkkN</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Urzica, A.</creator><creator>Bardac, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>Optimized Directional Content Distribution Using Reputation</title><author>Urzica, A. ; Bardac, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-4673e430100ea9ec81aee7451295cdd0cbbef6a5a2732f8276960b00dda396453</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Availability</topic><topic>Computational modeling</topic><topic>Content replication</topic><topic>Humans</topic><topic>Mobile communication</topic><topic>Norms</topic><topic>Reputation</topic><topic>Robustness</topic><topic>Rocks</topic><toplevel>online_resources</toplevel><creatorcontrib>Urzica, A.</creatorcontrib><creatorcontrib>Bardac, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Urzica, A.</au><au>Bardac, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimized Directional Content Distribution Using Reputation</atitle><btitle>2012 Fourth International Conference on Intelligent Networking and Collaborative Systems</btitle><stitle>incos</stitle><date>2012-09</date><risdate>2012</risdate><spage>624</spage><epage>629</epage><pages>624-629</pages><isbn>9781467322799</isbn><isbn>1467322792</isbn><eisbn>9781467322812</eisbn><eisbn>9780769548081</eisbn><eisbn>1467322814</eisbn><eisbn>0769548083</eisbn><coden>IEEPAD</coden><abstract>Word of mouth represents, from historical times, a powerful mechanism employed within human societies for influencing the behavior of their members. Translated into the computational world, the same feedback mechanism preserves or even broadens its impact. This paper presents an intriguing perspective on using reputation systems: reputation is gained by complying with the norms and norms are modified by the agents with high reputation. The aim of the model proposed by this paper is to optimize content distribution within a system. The model achieves this goal by prioritizing the preferences of the highest reputed agents. The reputation of an agent is translated into the influence it gains in altering system norms. The computational reputation model proposed requires minimum resources being thus well suited for agents running on mobile devices. Being completely decentralized, the interaction architecture provided by the model offers a high degree of scalability.</abstract><pub>IEEE</pub><doi>10.1109/iNCoS.2012.100</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467322799 |
ispartof | 2012 Fourth International Conference on Intelligent Networking and Collaborative Systems, 2012, p.624-629 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6337995 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Availability Computational modeling Content replication Humans Mobile communication Norms Reputation Robustness Rocks |
title | Optimized Directional Content Distribution Using Reputation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A04%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimized%20Directional%20Content%20Distribution%20Using%20Reputation&rft.btitle=2012%20Fourth%20International%20Conference%20on%20Intelligent%20Networking%20and%20Collaborative%20Systems&rft.au=Urzica,%20A.&rft.date=2012-09&rft.spage=624&rft.epage=629&rft.pages=624-629&rft.isbn=9781467322799&rft.isbn_list=1467322792&rft.coden=IEEPAD&rft_id=info:doi/10.1109/iNCoS.2012.100&rft_dat=%3Cieee_6IE%3E6337995%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467322812&rft.eisbn_list=9780769548081&rft.eisbn_list=1467322814&rft.eisbn_list=0769548083&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6337995&rfr_iscdi=true |