Multicore-Enabled Smart Storage for Clusters

We present a multicore-enabled smart storage for clusters in general and MapReduce clusters in particular. The goal of this research is to improve performance of data-intensive parallel applications on clusters by offloading data processing to multicore processors in storage nodes. Compared with tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhiyang Ding, Xunfei Jiang, Shu Yin, Xiao Qin, Kai-Hsiung Chang, Xiaojun Ruan, Alghamdi, M. I., Meikang Qiu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 116
container_issue
container_start_page 108
container_title
container_volume
creator Zhiyang Ding
Xunfei Jiang
Shu Yin
Xiao Qin
Kai-Hsiung Chang
Xiaojun Ruan
Alghamdi, M. I.
Meikang Qiu
description We present a multicore-enabled smart storage for clusters in general and MapReduce clusters in particular. The goal of this research is to improve performance of data-intensive parallel applications on clusters by offloading data processing to multicore processors in storage nodes. Compared with traditional storage devices, next-generation disks will have computing capability to reduce computational load of host processors or CPUs. With the advance of processor and memory technologies, smart storage systems are promising devices to perform complex on-disk operations. The proposed smart storage system can avoid moving a huge amount of data back and forth between storage nodes and computing nodes in a cluster. To enhance the performance of data-intensive applications, we have designed a smart storage system called Multicore-enabled Smart Storage (McSD), in which a multicore processor is integrated in storage nodes. We have implemented a programming framework for data-intensive applications running on a computing system coupled with McSD. The programming framework aims at balancing load between computing nodes and multicore-enabled smart storage nodes. To fully utilize multicore processors in smart storage nodes, we have implemented the MapReduce model for McSDs to handle parallel computing on a cluster. A prototype of McSD has been implemented in a cluster connected by Gigabit Ethernet. Experimental results show that McSD can significantly reduce the execution times of three real-world applications - word count, string matching, and matrix multiplication. We demonstrate that the integration of multicore-enabled smart storage with MapReduce clusters is a promising approach to improving overall performance of data-intensive applications on clusters.
doi_str_mv 10.1109/CLUSTER.2012.70
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6337771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6337771</ieee_id><sourcerecordid>6337771</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c098bb8260a59a69a3f6add46531167bdead87ed9d260733fa0ee3b268eb8ec83</originalsourceid><addsrcrecordid>eNotjktLxDAURuMLrGPXLtz0B5iam3eWUuoDKoKdWQ9JcyuVaiXtLPz3U9BvczaHw0fIDbASgLn7qtm12_q95Ax4adgJuWJGOyUtM-qUZBy0pY4rcUZyZyxIbQSXnLtzkoFSnCou5SXJ5_mTrbNgmdMZuXs9jMvQTQlp_e3DiLFov3xainaZkv_Aop9SUY2HecE0X5OL3o8z5v_ckN1jva2eafP29FI9NHQAoxbaMWdDsFwzr5zXzote-xilVgJAmxDRR2swurgqRojeM0QRuLYYLHZWbMjtX3dAxP1PGtZHv3sthDEGxBESG0cH</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multicore-Enabled Smart Storage for Clusters</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhiyang Ding ; Xunfei Jiang ; Shu Yin ; Xiao Qin ; Kai-Hsiung Chang ; Xiaojun Ruan ; Alghamdi, M. I. ; Meikang Qiu</creator><creatorcontrib>Zhiyang Ding ; Xunfei Jiang ; Shu Yin ; Xiao Qin ; Kai-Hsiung Chang ; Xiaojun Ruan ; Alghamdi, M. I. ; Meikang Qiu</creatorcontrib><description>We present a multicore-enabled smart storage for clusters in general and MapReduce clusters in particular. The goal of this research is to improve performance of data-intensive parallel applications on clusters by offloading data processing to multicore processors in storage nodes. Compared with traditional storage devices, next-generation disks will have computing capability to reduce computational load of host processors or CPUs. With the advance of processor and memory technologies, smart storage systems are promising devices to perform complex on-disk operations. The proposed smart storage system can avoid moving a huge amount of data back and forth between storage nodes and computing nodes in a cluster. To enhance the performance of data-intensive applications, we have designed a smart storage system called Multicore-enabled Smart Storage (McSD), in which a multicore processor is integrated in storage nodes. We have implemented a programming framework for data-intensive applications running on a computing system coupled with McSD. The programming framework aims at balancing load between computing nodes and multicore-enabled smart storage nodes. To fully utilize multicore processors in smart storage nodes, we have implemented the MapReduce model for McSDs to handle parallel computing on a cluster. A prototype of McSD has been implemented in a cluster connected by Gigabit Ethernet. Experimental results show that McSD can significantly reduce the execution times of three real-world applications - word count, string matching, and matrix multiplication. We demonstrate that the integration of multicore-enabled smart storage with MapReduce clusters is a promising approach to improving overall performance of data-intensive applications on clusters.</description><identifier>ISSN: 1552-5244</identifier><identifier>ISBN: 9781467324229</identifier><identifier>ISBN: 1467324221</identifier><identifier>EISSN: 2168-9253</identifier><identifier>EISBN: 0769548075</identifier><identifier>EISBN: 9780769548074</identifier><identifier>DOI: 10.1109/CLUSTER.2012.70</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computers ; Disk drives ; Multicore processing ; Performance evaluation ; Program processors ; Programming ; Prototypes</subject><ispartof>2012 IEEE International Conference on Cluster Computing, 2012, p.108-116</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6337771$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6337771$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhiyang Ding</creatorcontrib><creatorcontrib>Xunfei Jiang</creatorcontrib><creatorcontrib>Shu Yin</creatorcontrib><creatorcontrib>Xiao Qin</creatorcontrib><creatorcontrib>Kai-Hsiung Chang</creatorcontrib><creatorcontrib>Xiaojun Ruan</creatorcontrib><creatorcontrib>Alghamdi, M. I.</creatorcontrib><creatorcontrib>Meikang Qiu</creatorcontrib><title>Multicore-Enabled Smart Storage for Clusters</title><title>2012 IEEE International Conference on Cluster Computing</title><addtitle>CLUSTR</addtitle><description>We present a multicore-enabled smart storage for clusters in general and MapReduce clusters in particular. The goal of this research is to improve performance of data-intensive parallel applications on clusters by offloading data processing to multicore processors in storage nodes. Compared with traditional storage devices, next-generation disks will have computing capability to reduce computational load of host processors or CPUs. With the advance of processor and memory technologies, smart storage systems are promising devices to perform complex on-disk operations. The proposed smart storage system can avoid moving a huge amount of data back and forth between storage nodes and computing nodes in a cluster. To enhance the performance of data-intensive applications, we have designed a smart storage system called Multicore-enabled Smart Storage (McSD), in which a multicore processor is integrated in storage nodes. We have implemented a programming framework for data-intensive applications running on a computing system coupled with McSD. The programming framework aims at balancing load between computing nodes and multicore-enabled smart storage nodes. To fully utilize multicore processors in smart storage nodes, we have implemented the MapReduce model for McSDs to handle parallel computing on a cluster. A prototype of McSD has been implemented in a cluster connected by Gigabit Ethernet. Experimental results show that McSD can significantly reduce the execution times of three real-world applications - word count, string matching, and matrix multiplication. We demonstrate that the integration of multicore-enabled smart storage with MapReduce clusters is a promising approach to improving overall performance of data-intensive applications on clusters.</description><subject>Computers</subject><subject>Disk drives</subject><subject>Multicore processing</subject><subject>Performance evaluation</subject><subject>Program processors</subject><subject>Programming</subject><subject>Prototypes</subject><issn>1552-5244</issn><issn>2168-9253</issn><isbn>9781467324229</isbn><isbn>1467324221</isbn><isbn>0769548075</isbn><isbn>9780769548074</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjktLxDAURuMLrGPXLtz0B5iam3eWUuoDKoKdWQ9JcyuVaiXtLPz3U9BvczaHw0fIDbASgLn7qtm12_q95Ax4adgJuWJGOyUtM-qUZBy0pY4rcUZyZyxIbQSXnLtzkoFSnCou5SXJ5_mTrbNgmdMZuXs9jMvQTQlp_e3DiLFov3xainaZkv_Aop9SUY2HecE0X5OL3o8z5v_ckN1jva2eafP29FI9NHQAoxbaMWdDsFwzr5zXzote-xilVgJAmxDRR2swurgqRojeM0QRuLYYLHZWbMjtX3dAxP1PGtZHv3sthDEGxBESG0cH</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Zhiyang Ding</creator><creator>Xunfei Jiang</creator><creator>Shu Yin</creator><creator>Xiao Qin</creator><creator>Kai-Hsiung Chang</creator><creator>Xiaojun Ruan</creator><creator>Alghamdi, M. I.</creator><creator>Meikang Qiu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>Multicore-Enabled Smart Storage for Clusters</title><author>Zhiyang Ding ; Xunfei Jiang ; Shu Yin ; Xiao Qin ; Kai-Hsiung Chang ; Xiaojun Ruan ; Alghamdi, M. I. ; Meikang Qiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c098bb8260a59a69a3f6add46531167bdead87ed9d260733fa0ee3b268eb8ec83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computers</topic><topic>Disk drives</topic><topic>Multicore processing</topic><topic>Performance evaluation</topic><topic>Program processors</topic><topic>Programming</topic><topic>Prototypes</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhiyang Ding</creatorcontrib><creatorcontrib>Xunfei Jiang</creatorcontrib><creatorcontrib>Shu Yin</creatorcontrib><creatorcontrib>Xiao Qin</creatorcontrib><creatorcontrib>Kai-Hsiung Chang</creatorcontrib><creatorcontrib>Xiaojun Ruan</creatorcontrib><creatorcontrib>Alghamdi, M. I.</creatorcontrib><creatorcontrib>Meikang Qiu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhiyang Ding</au><au>Xunfei Jiang</au><au>Shu Yin</au><au>Xiao Qin</au><au>Kai-Hsiung Chang</au><au>Xiaojun Ruan</au><au>Alghamdi, M. I.</au><au>Meikang Qiu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multicore-Enabled Smart Storage for Clusters</atitle><btitle>2012 IEEE International Conference on Cluster Computing</btitle><stitle>CLUSTR</stitle><date>2012-09</date><risdate>2012</risdate><spage>108</spage><epage>116</epage><pages>108-116</pages><issn>1552-5244</issn><eissn>2168-9253</eissn><isbn>9781467324229</isbn><isbn>1467324221</isbn><eisbn>0769548075</eisbn><eisbn>9780769548074</eisbn><coden>IEEPAD</coden><abstract>We present a multicore-enabled smart storage for clusters in general and MapReduce clusters in particular. The goal of this research is to improve performance of data-intensive parallel applications on clusters by offloading data processing to multicore processors in storage nodes. Compared with traditional storage devices, next-generation disks will have computing capability to reduce computational load of host processors or CPUs. With the advance of processor and memory technologies, smart storage systems are promising devices to perform complex on-disk operations. The proposed smart storage system can avoid moving a huge amount of data back and forth between storage nodes and computing nodes in a cluster. To enhance the performance of data-intensive applications, we have designed a smart storage system called Multicore-enabled Smart Storage (McSD), in which a multicore processor is integrated in storage nodes. We have implemented a programming framework for data-intensive applications running on a computing system coupled with McSD. The programming framework aims at balancing load between computing nodes and multicore-enabled smart storage nodes. To fully utilize multicore processors in smart storage nodes, we have implemented the MapReduce model for McSDs to handle parallel computing on a cluster. A prototype of McSD has been implemented in a cluster connected by Gigabit Ethernet. Experimental results show that McSD can significantly reduce the execution times of three real-world applications - word count, string matching, and matrix multiplication. We demonstrate that the integration of multicore-enabled smart storage with MapReduce clusters is a promising approach to improving overall performance of data-intensive applications on clusters.</abstract><pub>IEEE</pub><doi>10.1109/CLUSTER.2012.70</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1552-5244
ispartof 2012 IEEE International Conference on Cluster Computing, 2012, p.108-116
issn 1552-5244
2168-9253
language eng
recordid cdi_ieee_primary_6337771
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computers
Disk drives
Multicore processing
Performance evaluation
Program processors
Programming
Prototypes
title Multicore-Enabled Smart Storage for Clusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T00%3A10%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multicore-Enabled%20Smart%20Storage%20for%20Clusters&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Cluster%20Computing&rft.au=Zhiyang%20Ding&rft.date=2012-09&rft.spage=108&rft.epage=116&rft.pages=108-116&rft.issn=1552-5244&rft.eissn=2168-9253&rft.isbn=9781467324229&rft.isbn_list=1467324221&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CLUSTER.2012.70&rft_dat=%3Cieee_6IE%3E6337771%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769548075&rft.eisbn_list=9780769548074&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6337771&rfr_iscdi=true