Pulse Coupled Neural Networks and Image Morphology for Mammogram Preprocessing
Given that over 230,000 women in the United States alone will contract breast cancer, resulting in over 39,000 deaths and that there will be an estimated 458000 such deaths worldwide, the early detection and management of breast cancer is a significant problem. Currently, mammography provides the do...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 290 |
---|---|
container_issue | |
container_start_page | 286 |
container_title | |
container_volume | |
creator | Wolfer, J. |
description | Given that over 230,000 women in the United States alone will contract breast cancer, resulting in over 39,000 deaths and that there will be an estimated 458000 such deaths worldwide, the early detection and management of breast cancer is a significant problem. Currently, mammography provides the dominant front-line screening procedure. To assist in the interpretation of mammograms, a variety of computer aided diagnostic algorithms have been developed. A critical step in most of these algorithms is to remove image artifacts and isolate the breast from the mammogram background. This study explores the use of a biologically inspired model, the Pulse Coupled Neural Network, to form candidate image segments that, when combined with standard image morphology operators, can be used to remove image acquisition artifacts and isolate the breast profile in the mammogram. |
doi_str_mv | 10.1109/IBICA.2012.24 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6337679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6337679</ieee_id><sourcerecordid>6337679</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ffee75f9517f3c6752dc97be5b8d97a0048385341ce9049c82be765f0ae219463</originalsourceid><addsrcrecordid>eNotjjtPwzAYAI0QElAyMrH4DyT4_Rgh4hGpLR26V07yOQSSOrIbof57IsEtt50OoXtKCkqJfayeq_KpYISygokLlFltiFZWCsM1vUS3VCjNmeGGX6MspS-yYKgRlN2g7W4eEuAyzNMALd7CHN2w6PQT4nfC7tjianQd4E2I02cYQnfGPkS8ceMYuuhGvIswxdBASv2xu0NX3i3B7N8rtH992Zfv-frjbZlc570lp9x7AC29lVR73igtWdtYXYOsTWu1I2Q5N5IL2oAlwjaG1aCV9MQBo1YovkIPf9keAA5T7EcXzwfFuVba8l-A0U5m</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Pulse Coupled Neural Networks and Image Morphology for Mammogram Preprocessing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wolfer, J.</creator><creatorcontrib>Wolfer, J.</creatorcontrib><description>Given that over 230,000 women in the United States alone will contract breast cancer, resulting in over 39,000 deaths and that there will be an estimated 458000 such deaths worldwide, the early detection and management of breast cancer is a significant problem. Currently, mammography provides the dominant front-line screening procedure. To assist in the interpretation of mammograms, a variety of computer aided diagnostic algorithms have been developed. A critical step in most of these algorithms is to remove image artifacts and isolate the breast from the mammogram background. This study explores the use of a biologically inspired model, the Pulse Coupled Neural Network, to form candidate image segments that, when combined with standard image morphology operators, can be used to remove image acquisition artifacts and isolate the breast profile in the mammogram.</description><identifier>ISBN: 1467328383</identifier><identifier>ISBN: 9781467328388</identifier><identifier>EISBN: 9780769548371</identifier><identifier>EISBN: 0769548377</identifier><identifier>DOI: 10.1109/IBICA.2012.24</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>bio-inspired computing ; Breast ; Image segmentation ; mammogram processing ; medical imaging ; Neural networks ; Neurons ; Solid modeling</subject><ispartof>2012 Third International Conference on Innovations in Bio-Inspired Computing and Applications, 2012, p.286-290</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6337679$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6337679$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wolfer, J.</creatorcontrib><title>Pulse Coupled Neural Networks and Image Morphology for Mammogram Preprocessing</title><title>2012 Third International Conference on Innovations in Bio-Inspired Computing and Applications</title><addtitle>ibica</addtitle><description>Given that over 230,000 women in the United States alone will contract breast cancer, resulting in over 39,000 deaths and that there will be an estimated 458000 such deaths worldwide, the early detection and management of breast cancer is a significant problem. Currently, mammography provides the dominant front-line screening procedure. To assist in the interpretation of mammograms, a variety of computer aided diagnostic algorithms have been developed. A critical step in most of these algorithms is to remove image artifacts and isolate the breast from the mammogram background. This study explores the use of a biologically inspired model, the Pulse Coupled Neural Network, to form candidate image segments that, when combined with standard image morphology operators, can be used to remove image acquisition artifacts and isolate the breast profile in the mammogram.</description><subject>bio-inspired computing</subject><subject>Breast</subject><subject>Image segmentation</subject><subject>mammogram processing</subject><subject>medical imaging</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Solid modeling</subject><isbn>1467328383</isbn><isbn>9781467328388</isbn><isbn>9780769548371</isbn><isbn>0769548377</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjjtPwzAYAI0QElAyMrH4DyT4_Rgh4hGpLR26V07yOQSSOrIbof57IsEtt50OoXtKCkqJfayeq_KpYISygokLlFltiFZWCsM1vUS3VCjNmeGGX6MspS-yYKgRlN2g7W4eEuAyzNMALd7CHN2w6PQT4nfC7tjianQd4E2I02cYQnfGPkS8ceMYuuhGvIswxdBASv2xu0NX3i3B7N8rtH992Zfv-frjbZlc570lp9x7AC29lVR73igtWdtYXYOsTWu1I2Q5N5IL2oAlwjaG1aCV9MQBo1YovkIPf9keAA5T7EcXzwfFuVba8l-A0U5m</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Wolfer, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>Pulse Coupled Neural Networks and Image Morphology for Mammogram Preprocessing</title><author>Wolfer, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ffee75f9517f3c6752dc97be5b8d97a0048385341ce9049c82be765f0ae219463</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>bio-inspired computing</topic><topic>Breast</topic><topic>Image segmentation</topic><topic>mammogram processing</topic><topic>medical imaging</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Solid modeling</topic><toplevel>online_resources</toplevel><creatorcontrib>Wolfer, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wolfer, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Pulse Coupled Neural Networks and Image Morphology for Mammogram Preprocessing</atitle><btitle>2012 Third International Conference on Innovations in Bio-Inspired Computing and Applications</btitle><stitle>ibica</stitle><date>2012-09</date><risdate>2012</risdate><spage>286</spage><epage>290</epage><pages>286-290</pages><isbn>1467328383</isbn><isbn>9781467328388</isbn><eisbn>9780769548371</eisbn><eisbn>0769548377</eisbn><coden>IEEPAD</coden><abstract>Given that over 230,000 women in the United States alone will contract breast cancer, resulting in over 39,000 deaths and that there will be an estimated 458000 such deaths worldwide, the early detection and management of breast cancer is a significant problem. Currently, mammography provides the dominant front-line screening procedure. To assist in the interpretation of mammograms, a variety of computer aided diagnostic algorithms have been developed. A critical step in most of these algorithms is to remove image artifacts and isolate the breast from the mammogram background. This study explores the use of a biologically inspired model, the Pulse Coupled Neural Network, to form candidate image segments that, when combined with standard image morphology operators, can be used to remove image acquisition artifacts and isolate the breast profile in the mammogram.</abstract><pub>IEEE</pub><doi>10.1109/IBICA.2012.24</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1467328383 |
ispartof | 2012 Third International Conference on Innovations in Bio-Inspired Computing and Applications, 2012, p.286-290 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6337679 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | bio-inspired computing Breast Image segmentation mammogram processing medical imaging Neural networks Neurons Solid modeling |
title | Pulse Coupled Neural Networks and Image Morphology for Mammogram Preprocessing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A45%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Pulse%20Coupled%20Neural%20Networks%20and%20Image%20Morphology%20for%20Mammogram%20Preprocessing&rft.btitle=2012%20Third%20International%20Conference%20on%20Innovations%20in%20Bio-Inspired%20Computing%20and%20Applications&rft.au=Wolfer,%20J.&rft.date=2012-09&rft.spage=286&rft.epage=290&rft.pages=286-290&rft.isbn=1467328383&rft.isbn_list=9781467328388&rft.coden=IEEPAD&rft_id=info:doi/10.1109/IBICA.2012.24&rft_dat=%3Cieee_6IE%3E6337679%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769548371&rft.eisbn_list=0769548377&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6337679&rfr_iscdi=true |