Pulse Coupled Neural Networks and Image Morphology for Mammogram Preprocessing

Given that over 230,000 women in the United States alone will contract breast cancer, resulting in over 39,000 deaths and that there will be an estimated 458000 such deaths worldwide, the early detection and management of breast cancer is a significant problem. Currently, mammography provides the do...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Wolfer, J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 290
container_issue
container_start_page 286
container_title
container_volume
creator Wolfer, J.
description Given that over 230,000 women in the United States alone will contract breast cancer, resulting in over 39,000 deaths and that there will be an estimated 458000 such deaths worldwide, the early detection and management of breast cancer is a significant problem. Currently, mammography provides the dominant front-line screening procedure. To assist in the interpretation of mammograms, a variety of computer aided diagnostic algorithms have been developed. A critical step in most of these algorithms is to remove image artifacts and isolate the breast from the mammogram background. This study explores the use of a biologically inspired model, the Pulse Coupled Neural Network, to form candidate image segments that, when combined with standard image morphology operators, can be used to remove image acquisition artifacts and isolate the breast profile in the mammogram.
doi_str_mv 10.1109/IBICA.2012.24
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6337679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6337679</ieee_id><sourcerecordid>6337679</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ffee75f9517f3c6752dc97be5b8d97a0048385341ce9049c82be765f0ae219463</originalsourceid><addsrcrecordid>eNotjjtPwzAYAI0QElAyMrH4DyT4_Rgh4hGpLR26V07yOQSSOrIbof57IsEtt50OoXtKCkqJfayeq_KpYISygokLlFltiFZWCsM1vUS3VCjNmeGGX6MspS-yYKgRlN2g7W4eEuAyzNMALd7CHN2w6PQT4nfC7tjianQd4E2I02cYQnfGPkS8ceMYuuhGvIswxdBASv2xu0NX3i3B7N8rtH992Zfv-frjbZlc570lp9x7AC29lVR73igtWdtYXYOsTWu1I2Q5N5IL2oAlwjaG1aCV9MQBo1YovkIPf9keAA5T7EcXzwfFuVba8l-A0U5m</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Pulse Coupled Neural Networks and Image Morphology for Mammogram Preprocessing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wolfer, J.</creator><creatorcontrib>Wolfer, J.</creatorcontrib><description>Given that over 230,000 women in the United States alone will contract breast cancer, resulting in over 39,000 deaths and that there will be an estimated 458000 such deaths worldwide, the early detection and management of breast cancer is a significant problem. Currently, mammography provides the dominant front-line screening procedure. To assist in the interpretation of mammograms, a variety of computer aided diagnostic algorithms have been developed. A critical step in most of these algorithms is to remove image artifacts and isolate the breast from the mammogram background. This study explores the use of a biologically inspired model, the Pulse Coupled Neural Network, to form candidate image segments that, when combined with standard image morphology operators, can be used to remove image acquisition artifacts and isolate the breast profile in the mammogram.</description><identifier>ISBN: 1467328383</identifier><identifier>ISBN: 9781467328388</identifier><identifier>EISBN: 9780769548371</identifier><identifier>EISBN: 0769548377</identifier><identifier>DOI: 10.1109/IBICA.2012.24</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>bio-inspired computing ; Breast ; Image segmentation ; mammogram processing ; medical imaging ; Neural networks ; Neurons ; Solid modeling</subject><ispartof>2012 Third International Conference on Innovations in Bio-Inspired Computing and Applications, 2012, p.286-290</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6337679$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6337679$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wolfer, J.</creatorcontrib><title>Pulse Coupled Neural Networks and Image Morphology for Mammogram Preprocessing</title><title>2012 Third International Conference on Innovations in Bio-Inspired Computing and Applications</title><addtitle>ibica</addtitle><description>Given that over 230,000 women in the United States alone will contract breast cancer, resulting in over 39,000 deaths and that there will be an estimated 458000 such deaths worldwide, the early detection and management of breast cancer is a significant problem. Currently, mammography provides the dominant front-line screening procedure. To assist in the interpretation of mammograms, a variety of computer aided diagnostic algorithms have been developed. A critical step in most of these algorithms is to remove image artifacts and isolate the breast from the mammogram background. This study explores the use of a biologically inspired model, the Pulse Coupled Neural Network, to form candidate image segments that, when combined with standard image morphology operators, can be used to remove image acquisition artifacts and isolate the breast profile in the mammogram.</description><subject>bio-inspired computing</subject><subject>Breast</subject><subject>Image segmentation</subject><subject>mammogram processing</subject><subject>medical imaging</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Solid modeling</subject><isbn>1467328383</isbn><isbn>9781467328388</isbn><isbn>9780769548371</isbn><isbn>0769548377</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjjtPwzAYAI0QElAyMrH4DyT4_Rgh4hGpLR26V07yOQSSOrIbof57IsEtt50OoXtKCkqJfayeq_KpYISygokLlFltiFZWCsM1vUS3VCjNmeGGX6MspS-yYKgRlN2g7W4eEuAyzNMALd7CHN2w6PQT4nfC7tjianQd4E2I02cYQnfGPkS8ceMYuuhGvIswxdBASv2xu0NX3i3B7N8rtH992Zfv-frjbZlc570lp9x7AC29lVR73igtWdtYXYOsTWu1I2Q5N5IL2oAlwjaG1aCV9MQBo1YovkIPf9keAA5T7EcXzwfFuVba8l-A0U5m</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Wolfer, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>Pulse Coupled Neural Networks and Image Morphology for Mammogram Preprocessing</title><author>Wolfer, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ffee75f9517f3c6752dc97be5b8d97a0048385341ce9049c82be765f0ae219463</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>bio-inspired computing</topic><topic>Breast</topic><topic>Image segmentation</topic><topic>mammogram processing</topic><topic>medical imaging</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Solid modeling</topic><toplevel>online_resources</toplevel><creatorcontrib>Wolfer, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wolfer, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Pulse Coupled Neural Networks and Image Morphology for Mammogram Preprocessing</atitle><btitle>2012 Third International Conference on Innovations in Bio-Inspired Computing and Applications</btitle><stitle>ibica</stitle><date>2012-09</date><risdate>2012</risdate><spage>286</spage><epage>290</epage><pages>286-290</pages><isbn>1467328383</isbn><isbn>9781467328388</isbn><eisbn>9780769548371</eisbn><eisbn>0769548377</eisbn><coden>IEEPAD</coden><abstract>Given that over 230,000 women in the United States alone will contract breast cancer, resulting in over 39,000 deaths and that there will be an estimated 458000 such deaths worldwide, the early detection and management of breast cancer is a significant problem. Currently, mammography provides the dominant front-line screening procedure. To assist in the interpretation of mammograms, a variety of computer aided diagnostic algorithms have been developed. A critical step in most of these algorithms is to remove image artifacts and isolate the breast from the mammogram background. This study explores the use of a biologically inspired model, the Pulse Coupled Neural Network, to form candidate image segments that, when combined with standard image morphology operators, can be used to remove image acquisition artifacts and isolate the breast profile in the mammogram.</abstract><pub>IEEE</pub><doi>10.1109/IBICA.2012.24</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467328383
ispartof 2012 Third International Conference on Innovations in Bio-Inspired Computing and Applications, 2012, p.286-290
issn
language eng
recordid cdi_ieee_primary_6337679
source IEEE Electronic Library (IEL) Conference Proceedings
subjects bio-inspired computing
Breast
Image segmentation
mammogram processing
medical imaging
Neural networks
Neurons
Solid modeling
title Pulse Coupled Neural Networks and Image Morphology for Mammogram Preprocessing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A45%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Pulse%20Coupled%20Neural%20Networks%20and%20Image%20Morphology%20for%20Mammogram%20Preprocessing&rft.btitle=2012%20Third%20International%20Conference%20on%20Innovations%20in%20Bio-Inspired%20Computing%20and%20Applications&rft.au=Wolfer,%20J.&rft.date=2012-09&rft.spage=286&rft.epage=290&rft.pages=286-290&rft.isbn=1467328383&rft.isbn_list=9781467328388&rft.coden=IEEPAD&rft_id=info:doi/10.1109/IBICA.2012.24&rft_dat=%3Cieee_6IE%3E6337679%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769548371&rft.eisbn_list=0769548377&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6337679&rfr_iscdi=true