Hybrid no-reference video quality metric based on multiway PLSR

In real-life applications, no-reference metrics are more useful than full-reference metrics. To design such metrics, we apply data analysis methods to objectively measurable features and to data originating from subjective testing. Unfortunately, the information about temporal variation of quality i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Keimel, C., Habigt, J., Diepold, K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1248
container_issue
container_start_page 1244
container_title
container_volume
creator Keimel, C.
Habigt, J.
Diepold, K.
description In real-life applications, no-reference metrics are more useful than full-reference metrics. To design such metrics, we apply data analysis methods to objectively measurable features and to data originating from subjective testing. Unfortunately, the information about temporal variation of quality is often lost due to the temporal pooling over all frames. Instead of using temporal pooling, we have recently designed a H.264/AVC bitstream no-reference video quality metric employing multiway Partial Least Squares Regression (PLSR), which leads to an improved prediction performance. In this contribution we will utilize multiway PLSR to design a hybrid metric that combines both bitstream-based features with pixel-based features. Our results show that the additional inclusion of the pixel-based features improves the quality prediction even further.
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6334343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6334343</ieee_id><sourcerecordid>6334343</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-dd7d0a2840cf1fa80632b0bb9233dfcfe3e6ed4469ffdcb463c36ecd7e588b733</originalsourceid><addsrcrecordid>eNpNjMtKAzEYRoMXsNY-gZu8QCDJn0kyK5GitjCgtLouufyByFw0M1Xm7S3owu8szuLAd0YWUoqaVaoW5-RaKG1AcG3ri3_hiqzG8Z2fZmUlJV-Qu83sS460H1jBhAX7gPQrRxzo59G1eZpph1PJgXo3YqRDT7tjO-VvN9OXZr-7IZfJtSOu_rwkb48Pr-sNa56ftuv7hmVhqonFaCJ30ioekkjOcg3Sc-9rCRBTSAioMSql65Ri8EpDAI0hGqys9QZgSW5_fzMiHj5K7lyZDxpAnYAfCpFGVw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hybrid no-reference video quality metric based on multiway PLSR</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Keimel, C. ; Habigt, J. ; Diepold, K.</creator><creatorcontrib>Keimel, C. ; Habigt, J. ; Diepold, K.</creatorcontrib><description>In real-life applications, no-reference metrics are more useful than full-reference metrics. To design such metrics, we apply data analysis methods to objectively measurable features and to data originating from subjective testing. Unfortunately, the information about temporal variation of quality is often lost due to the temporal pooling over all frames. Instead of using temporal pooling, we have recently designed a H.264/AVC bitstream no-reference video quality metric employing multiway Partial Least Squares Regression (PLSR), which leads to an improved prediction performance. In this contribution we will utilize multiway PLSR to design a hybrid metric that combines both bitstream-based features with pixel-based features. Our results show that the additional inclusion of the pixel-based features improves the quality prediction even further.</description><identifier>ISSN: 2219-5491</identifier><identifier>ISBN: 1467310689</identifier><identifier>ISBN: 9781467310680</identifier><identifier>EISSN: 2219-5491</identifier><language>eng</language><publisher>IEEE</publisher><subject>Feature extraction ; hybrid metric ; Measurement ; multilinear data analysis ; multiway PLSR ; no-reference metric ; Quality assessment ; trilinear PLS ; Vectors ; Video coding ; Video quality metric ; Visualization</subject><ispartof>2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), 2012, p.1244-1248</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6334343$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6334343$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Keimel, C.</creatorcontrib><creatorcontrib>Habigt, J.</creatorcontrib><creatorcontrib>Diepold, K.</creatorcontrib><title>Hybrid no-reference video quality metric based on multiway PLSR</title><title>2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)</title><addtitle>EUSIPCO</addtitle><description>In real-life applications, no-reference metrics are more useful than full-reference metrics. To design such metrics, we apply data analysis methods to objectively measurable features and to data originating from subjective testing. Unfortunately, the information about temporal variation of quality is often lost due to the temporal pooling over all frames. Instead of using temporal pooling, we have recently designed a H.264/AVC bitstream no-reference video quality metric employing multiway Partial Least Squares Regression (PLSR), which leads to an improved prediction performance. In this contribution we will utilize multiway PLSR to design a hybrid metric that combines both bitstream-based features with pixel-based features. Our results show that the additional inclusion of the pixel-based features improves the quality prediction even further.</description><subject>Feature extraction</subject><subject>hybrid metric</subject><subject>Measurement</subject><subject>multilinear data analysis</subject><subject>multiway PLSR</subject><subject>no-reference metric</subject><subject>Quality assessment</subject><subject>trilinear PLS</subject><subject>Vectors</subject><subject>Video coding</subject><subject>Video quality metric</subject><subject>Visualization</subject><issn>2219-5491</issn><issn>2219-5491</issn><isbn>1467310689</isbn><isbn>9781467310680</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNjMtKAzEYRoMXsNY-gZu8QCDJn0kyK5GitjCgtLouufyByFw0M1Xm7S3owu8szuLAd0YWUoqaVaoW5-RaKG1AcG3ri3_hiqzG8Z2fZmUlJV-Qu83sS460H1jBhAX7gPQrRxzo59G1eZpph1PJgXo3YqRDT7tjO-VvN9OXZr-7IZfJtSOu_rwkb48Pr-sNa56ftuv7hmVhqonFaCJ30ioekkjOcg3Sc-9rCRBTSAioMSql65Ri8EpDAI0hGqys9QZgSW5_fzMiHj5K7lyZDxpAnYAfCpFGVw</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Keimel, C.</creator><creator>Habigt, J.</creator><creator>Diepold, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201208</creationdate><title>Hybrid no-reference video quality metric based on multiway PLSR</title><author>Keimel, C. ; Habigt, J. ; Diepold, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-dd7d0a2840cf1fa80632b0bb9233dfcfe3e6ed4469ffdcb463c36ecd7e588b733</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Feature extraction</topic><topic>hybrid metric</topic><topic>Measurement</topic><topic>multilinear data analysis</topic><topic>multiway PLSR</topic><topic>no-reference metric</topic><topic>Quality assessment</topic><topic>trilinear PLS</topic><topic>Vectors</topic><topic>Video coding</topic><topic>Video quality metric</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Keimel, C.</creatorcontrib><creatorcontrib>Habigt, J.</creatorcontrib><creatorcontrib>Diepold, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Keimel, C.</au><au>Habigt, J.</au><au>Diepold, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hybrid no-reference video quality metric based on multiway PLSR</atitle><btitle>2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)</btitle><stitle>EUSIPCO</stitle><date>2012-08</date><risdate>2012</risdate><spage>1244</spage><epage>1248</epage><pages>1244-1248</pages><issn>2219-5491</issn><eissn>2219-5491</eissn><isbn>1467310689</isbn><isbn>9781467310680</isbn><abstract>In real-life applications, no-reference metrics are more useful than full-reference metrics. To design such metrics, we apply data analysis methods to objectively measurable features and to data originating from subjective testing. Unfortunately, the information about temporal variation of quality is often lost due to the temporal pooling over all frames. Instead of using temporal pooling, we have recently designed a H.264/AVC bitstream no-reference video quality metric employing multiway Partial Least Squares Regression (PLSR), which leads to an improved prediction performance. In this contribution we will utilize multiway PLSR to design a hybrid metric that combines both bitstream-based features with pixel-based features. Our results show that the additional inclusion of the pixel-based features improves the quality prediction even further.</abstract><pub>IEEE</pub><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2219-5491
ispartof 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), 2012, p.1244-1248
issn 2219-5491
2219-5491
language eng
recordid cdi_ieee_primary_6334343
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Feature extraction
hybrid metric
Measurement
multilinear data analysis
multiway PLSR
no-reference metric
Quality assessment
trilinear PLS
Vectors
Video coding
Video quality metric
Visualization
title Hybrid no-reference video quality metric based on multiway PLSR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A20%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hybrid%20no-reference%20video%20quality%20metric%20based%20on%20multiway%20PLSR&rft.btitle=2012%20Proceedings%20of%20the%2020th%20European%20Signal%20Processing%20Conference%20(EUSIPCO)&rft.au=Keimel,%20C.&rft.date=2012-08&rft.spage=1244&rft.epage=1248&rft.pages=1244-1248&rft.issn=2219-5491&rft.eissn=2219-5491&rft.isbn=1467310689&rft.isbn_list=9781467310680&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E6334343%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6334343&rfr_iscdi=true