Scaling the Distributed Stochastic Simulation to Exaflop Supercomputers

The Monte-Carlo method (stochastic simulation) is the one of the major tools in statistical physics, complex systems science and many other fields and is considered to be the promising computational scheme to run on nearest future exaflop supercomputers with many thousands and even millions of compu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Glinsky, B., Rodionov, A., Marchenko, M., Podkorytov, D., Weins, D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1136
container_issue
container_start_page 1131
container_title
container_volume
creator Glinsky, B.
Rodionov, A.
Marchenko, M.
Podkorytov, D.
Weins, D.
description The Monte-Carlo method (stochastic simulation) is the one of the major tools in statistical physics, complex systems science and many other fields and is considered to be the promising computational scheme to run on nearest future exaflop supercomputers with many thousands and even millions of computational cores. We suggest a technique of the distributed stochastic simulation suitable for running on large amount of computational cores of the supercomputer. An example of the highly scalable application utilizing distributed stochastic simulation on up-to-date tera- and petaflop supercomputers is the program library PARMONC. Thorough examination of the proposed technique was done using simulation model that is based on the multiagent simulation system AGNES. The AGNES in particular enables one to evaluate the performance of the supposed exaflop supercomputer loaded with the distributed stochastic simulation.
doi_str_mv 10.1109/HPCC.2012.166
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6332301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6332301</ieee_id><sourcerecordid>6332301</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-64c1436c9996564d7ab9055b909354250f307e3f4aa8ca6c5a02d6c10c22e3f23</originalsourceid><addsrcrecordid>eNotjM1Kw0AURkdE0NYuXbmZF0i8d37udJYSaysUFKLrMp1M7EjShGQC-vYGdPMdOBw-xu4QckSwD7u3osgFoMiR6IItwJDVyiirLtkCFRkpkNT6mq3G8QsAEKQGY27YtvSuiedPnk6BP8UxDfE4pVDxMnX-5MYUPS9jOzUuxe7MU8c3365uup6XUx8G37X9nA_jLbuqXTOG1T-X7ON5817ssv3r9qV43GcRjU4ZKY9KkrfWkiZVGXe0oPU8VmolNNQSTJC1cm7tHXntQFTkEbwQsxZyye7_fmMI4dAPsXXDz4GkFBJQ_gKr70s8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Scaling the Distributed Stochastic Simulation to Exaflop Supercomputers</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Glinsky, B. ; Rodionov, A. ; Marchenko, M. ; Podkorytov, D. ; Weins, D.</creator><creatorcontrib>Glinsky, B. ; Rodionov, A. ; Marchenko, M. ; Podkorytov, D. ; Weins, D.</creatorcontrib><description>The Monte-Carlo method (stochastic simulation) is the one of the major tools in statistical physics, complex systems science and many other fields and is considered to be the promising computational scheme to run on nearest future exaflop supercomputers with many thousands and even millions of computational cores. We suggest a technique of the distributed stochastic simulation suitable for running on large amount of computational cores of the supercomputer. An example of the highly scalable application utilizing distributed stochastic simulation on up-to-date tera- and petaflop supercomputers is the program library PARMONC. Thorough examination of the proposed technique was done using simulation model that is based on the multiagent simulation system AGNES. The AGNES in particular enables one to evaluate the performance of the supposed exaflop supercomputer loaded with the distributed stochastic simulation.</description><identifier>ISBN: 1467321648</identifier><identifier>ISBN: 9781467321648</identifier><identifier>EISBN: 0769547494</identifier><identifier>EISBN: 9780769547497</identifier><identifier>DOI: 10.1109/HPCC.2012.166</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological system modeling ; Computational modeling ; Data models ; distributed computing ; Generators ; Monte Carlo methods ; Multiagent systems ; parallel algorithms ; parallel architectures ; random number generation ; simulation ; Stochastic processes ; Supercomputers</subject><ispartof>2012 IEEE 14th International Conference on High Performance Computing and Communication &amp; 2012 IEEE 9th International Conference on Embedded Software and Systems, 2012, p.1131-1136</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6332301$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6332301$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Glinsky, B.</creatorcontrib><creatorcontrib>Rodionov, A.</creatorcontrib><creatorcontrib>Marchenko, M.</creatorcontrib><creatorcontrib>Podkorytov, D.</creatorcontrib><creatorcontrib>Weins, D.</creatorcontrib><title>Scaling the Distributed Stochastic Simulation to Exaflop Supercomputers</title><title>2012 IEEE 14th International Conference on High Performance Computing and Communication &amp; 2012 IEEE 9th International Conference on Embedded Software and Systems</title><addtitle>hpcc-icess</addtitle><description>The Monte-Carlo method (stochastic simulation) is the one of the major tools in statistical physics, complex systems science and many other fields and is considered to be the promising computational scheme to run on nearest future exaflop supercomputers with many thousands and even millions of computational cores. We suggest a technique of the distributed stochastic simulation suitable for running on large amount of computational cores of the supercomputer. An example of the highly scalable application utilizing distributed stochastic simulation on up-to-date tera- and petaflop supercomputers is the program library PARMONC. Thorough examination of the proposed technique was done using simulation model that is based on the multiagent simulation system AGNES. The AGNES in particular enables one to evaluate the performance of the supposed exaflop supercomputer loaded with the distributed stochastic simulation.</description><subject>Biological system modeling</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>distributed computing</subject><subject>Generators</subject><subject>Monte Carlo methods</subject><subject>Multiagent systems</subject><subject>parallel algorithms</subject><subject>parallel architectures</subject><subject>random number generation</subject><subject>simulation</subject><subject>Stochastic processes</subject><subject>Supercomputers</subject><isbn>1467321648</isbn><isbn>9781467321648</isbn><isbn>0769547494</isbn><isbn>9780769547497</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjM1Kw0AURkdE0NYuXbmZF0i8d37udJYSaysUFKLrMp1M7EjShGQC-vYGdPMdOBw-xu4QckSwD7u3osgFoMiR6IItwJDVyiirLtkCFRkpkNT6mq3G8QsAEKQGY27YtvSuiedPnk6BP8UxDfE4pVDxMnX-5MYUPS9jOzUuxe7MU8c3365uup6XUx8G37X9nA_jLbuqXTOG1T-X7ON5817ssv3r9qV43GcRjU4ZKY9KkrfWkiZVGXe0oPU8VmolNNQSTJC1cm7tHXntQFTkEbwQsxZyye7_fmMI4dAPsXXDz4GkFBJQ_gKr70s8</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Glinsky, B.</creator><creator>Rodionov, A.</creator><creator>Marchenko, M.</creator><creator>Podkorytov, D.</creator><creator>Weins, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201206</creationdate><title>Scaling the Distributed Stochastic Simulation to Exaflop Supercomputers</title><author>Glinsky, B. ; Rodionov, A. ; Marchenko, M. ; Podkorytov, D. ; Weins, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-64c1436c9996564d7ab9055b909354250f307e3f4aa8ca6c5a02d6c10c22e3f23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biological system modeling</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>distributed computing</topic><topic>Generators</topic><topic>Monte Carlo methods</topic><topic>Multiagent systems</topic><topic>parallel algorithms</topic><topic>parallel architectures</topic><topic>random number generation</topic><topic>simulation</topic><topic>Stochastic processes</topic><topic>Supercomputers</topic><toplevel>online_resources</toplevel><creatorcontrib>Glinsky, B.</creatorcontrib><creatorcontrib>Rodionov, A.</creatorcontrib><creatorcontrib>Marchenko, M.</creatorcontrib><creatorcontrib>Podkorytov, D.</creatorcontrib><creatorcontrib>Weins, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Glinsky, B.</au><au>Rodionov, A.</au><au>Marchenko, M.</au><au>Podkorytov, D.</au><au>Weins, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Scaling the Distributed Stochastic Simulation to Exaflop Supercomputers</atitle><btitle>2012 IEEE 14th International Conference on High Performance Computing and Communication &amp; 2012 IEEE 9th International Conference on Embedded Software and Systems</btitle><stitle>hpcc-icess</stitle><date>2012-06</date><risdate>2012</risdate><spage>1131</spage><epage>1136</epage><pages>1131-1136</pages><isbn>1467321648</isbn><isbn>9781467321648</isbn><eisbn>0769547494</eisbn><eisbn>9780769547497</eisbn><coden>IEEPAD</coden><abstract>The Monte-Carlo method (stochastic simulation) is the one of the major tools in statistical physics, complex systems science and many other fields and is considered to be the promising computational scheme to run on nearest future exaflop supercomputers with many thousands and even millions of computational cores. We suggest a technique of the distributed stochastic simulation suitable for running on large amount of computational cores of the supercomputer. An example of the highly scalable application utilizing distributed stochastic simulation on up-to-date tera- and petaflop supercomputers is the program library PARMONC. Thorough examination of the proposed technique was done using simulation model that is based on the multiagent simulation system AGNES. The AGNES in particular enables one to evaluate the performance of the supposed exaflop supercomputer loaded with the distributed stochastic simulation.</abstract><pub>IEEE</pub><doi>10.1109/HPCC.2012.166</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467321648
ispartof 2012 IEEE 14th International Conference on High Performance Computing and Communication & 2012 IEEE 9th International Conference on Embedded Software and Systems, 2012, p.1131-1136
issn
language eng
recordid cdi_ieee_primary_6332301
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biological system modeling
Computational modeling
Data models
distributed computing
Generators
Monte Carlo methods
Multiagent systems
parallel algorithms
parallel architectures
random number generation
simulation
Stochastic processes
Supercomputers
title Scaling the Distributed Stochastic Simulation to Exaflop Supercomputers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A12%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Scaling%20the%20Distributed%20Stochastic%20Simulation%20to%20Exaflop%20Supercomputers&rft.btitle=2012%20IEEE%2014th%20International%20Conference%20on%20High%20Performance%20Computing%20and%20Communication%20&%202012%20IEEE%209th%20International%20Conference%20on%20Embedded%20Software%20and%20Systems&rft.au=Glinsky,%20B.&rft.date=2012-06&rft.spage=1131&rft.epage=1136&rft.pages=1131-1136&rft.isbn=1467321648&rft.isbn_list=9781467321648&rft.coden=IEEPAD&rft_id=info:doi/10.1109/HPCC.2012.166&rft_dat=%3Cieee_6IE%3E6332301%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769547494&rft.eisbn_list=9780769547497&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6332301&rfr_iscdi=true