A Finite State Machine-Based Fall Detection Mechanism on Smartphones

This paper presents a detection mechanism that utilizes the accelerometer in a smart phone carried by an individual to measure the human movement and hence determine if a fall event has occurred. The model of the fall activities are characterized as a finite state machine, which transits from one st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shang-Lin Hsieh, Ming Hsiung Su, Lu Feng Liu, Wey-Wen Jiang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 739
container_issue
container_start_page 735
container_title
container_volume
creator Shang-Lin Hsieh
Ming Hsiung Su
Lu Feng Liu
Wey-Wen Jiang
description This paper presents a detection mechanism that utilizes the accelerometer in a smart phone carried by an individual to measure the human movement and hence determine if a fall event has occurred. The model of the fall activities are characterized as a finite state machine, which transits from one state to another according to the data generated from the accelerometer. The presented detection mechanism utilizes the finite state machine to identify different types of falls, including forward falls, backward falls, and lateral falls. Experiments were conducted to evaluate the performance of the presented mechanism. The results show that the mechanism can effectively distinguish between actual fall events and normal activities such as squatting, and walking up and down stairs.
doi_str_mv 10.1109/UIC-ATC.2012.153
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6332075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6332075</ieee_id><sourcerecordid>6332075</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c33ebd411bfd9eb33d66b342b14e01c5bdca6efb77ef7c12edeee2e0e4109eda3</originalsourceid><addsrcrecordid>eNotT01Lw0AUXBFBW3sXvOQPJO7btx_JsaZGCy0e2p7LfryQlTQt3Vz89wbsHGYYBoYZxl6AFwC8ejus63y5rwvBQRSg8I7NuNGVkqVEuGczkNog8lLCI1uk9MMnlEIJrZ7Yapk1cYgjZbvRTry1vosD5e82Ucga2_fZikbyYzwP2ZZ8Z4eYTtlkdid7HS_deaD0zB5a2yda3HTODs3Hvv7KN9-f63q5ySMYNeYekVyQAK4NFTnEoLVDKRxI4uCVC95qap0x1BoPggIRCeIkp5cULM7Z639vnILj5RqnCb9HjSi4UfgH-KZL0w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Finite State Machine-Based Fall Detection Mechanism on Smartphones</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shang-Lin Hsieh ; Ming Hsiung Su ; Lu Feng Liu ; Wey-Wen Jiang</creator><creatorcontrib>Shang-Lin Hsieh ; Ming Hsiung Su ; Lu Feng Liu ; Wey-Wen Jiang</creatorcontrib><description>This paper presents a detection mechanism that utilizes the accelerometer in a smart phone carried by an individual to measure the human movement and hence determine if a fall event has occurred. The model of the fall activities are characterized as a finite state machine, which transits from one state to another according to the data generated from the accelerometer. The presented detection mechanism utilizes the finite state machine to identify different types of falls, including forward falls, backward falls, and lateral falls. Experiments were conducted to evaluate the performance of the presented mechanism. The results show that the mechanism can effectively distinguish between actual fall events and normal activities such as squatting, and walking up and down stairs.</description><identifier>ISBN: 1467330841</identifier><identifier>ISBN: 9781467330848</identifier><identifier>EISBN: 0769548431</identifier><identifier>EISBN: 9780769548432</identifier><identifier>DOI: 10.1109/UIC-ATC.2012.153</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>accelerometer ; Accelerometers ; Automata ; Conferences ; fall detecion ; finite state machine ; Injuries ; Legged locomotion ; Sensitivity ; Smart phones</subject><ispartof>2012 9th International Conference on Ubiquitous Intelligence and Computing and 9th International Conference on Autonomic and Trusted Computing, 2012, p.735-739</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6332075$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6332075$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shang-Lin Hsieh</creatorcontrib><creatorcontrib>Ming Hsiung Su</creatorcontrib><creatorcontrib>Lu Feng Liu</creatorcontrib><creatorcontrib>Wey-Wen Jiang</creatorcontrib><title>A Finite State Machine-Based Fall Detection Mechanism on Smartphones</title><title>2012 9th International Conference on Ubiquitous Intelligence and Computing and 9th International Conference on Autonomic and Trusted Computing</title><addtitle>uic-atc</addtitle><description>This paper presents a detection mechanism that utilizes the accelerometer in a smart phone carried by an individual to measure the human movement and hence determine if a fall event has occurred. The model of the fall activities are characterized as a finite state machine, which transits from one state to another according to the data generated from the accelerometer. The presented detection mechanism utilizes the finite state machine to identify different types of falls, including forward falls, backward falls, and lateral falls. Experiments were conducted to evaluate the performance of the presented mechanism. The results show that the mechanism can effectively distinguish between actual fall events and normal activities such as squatting, and walking up and down stairs.</description><subject>accelerometer</subject><subject>Accelerometers</subject><subject>Automata</subject><subject>Conferences</subject><subject>fall detecion</subject><subject>finite state machine</subject><subject>Injuries</subject><subject>Legged locomotion</subject><subject>Sensitivity</subject><subject>Smart phones</subject><isbn>1467330841</isbn><isbn>9781467330848</isbn><isbn>0769548431</isbn><isbn>9780769548432</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT01Lw0AUXBFBW3sXvOQPJO7btx_JsaZGCy0e2p7LfryQlTQt3Vz89wbsHGYYBoYZxl6AFwC8ejus63y5rwvBQRSg8I7NuNGVkqVEuGczkNog8lLCI1uk9MMnlEIJrZ7Yapk1cYgjZbvRTry1vosD5e82Ucga2_fZikbyYzwP2ZZ8Z4eYTtlkdid7HS_deaD0zB5a2yda3HTODs3Hvv7KN9-f63q5ySMYNeYekVyQAK4NFTnEoLVDKRxI4uCVC95qap0x1BoPggIRCeIkp5cULM7Z639vnILj5RqnCb9HjSi4UfgH-KZL0w</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Shang-Lin Hsieh</creator><creator>Ming Hsiung Su</creator><creator>Lu Feng Liu</creator><creator>Wey-Wen Jiang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>A Finite State Machine-Based Fall Detection Mechanism on Smartphones</title><author>Shang-Lin Hsieh ; Ming Hsiung Su ; Lu Feng Liu ; Wey-Wen Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c33ebd411bfd9eb33d66b342b14e01c5bdca6efb77ef7c12edeee2e0e4109eda3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>accelerometer</topic><topic>Accelerometers</topic><topic>Automata</topic><topic>Conferences</topic><topic>fall detecion</topic><topic>finite state machine</topic><topic>Injuries</topic><topic>Legged locomotion</topic><topic>Sensitivity</topic><topic>Smart phones</topic><toplevel>online_resources</toplevel><creatorcontrib>Shang-Lin Hsieh</creatorcontrib><creatorcontrib>Ming Hsiung Su</creatorcontrib><creatorcontrib>Lu Feng Liu</creatorcontrib><creatorcontrib>Wey-Wen Jiang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shang-Lin Hsieh</au><au>Ming Hsiung Su</au><au>Lu Feng Liu</au><au>Wey-Wen Jiang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Finite State Machine-Based Fall Detection Mechanism on Smartphones</atitle><btitle>2012 9th International Conference on Ubiquitous Intelligence and Computing and 9th International Conference on Autonomic and Trusted Computing</btitle><stitle>uic-atc</stitle><date>2012-09</date><risdate>2012</risdate><spage>735</spage><epage>739</epage><pages>735-739</pages><isbn>1467330841</isbn><isbn>9781467330848</isbn><eisbn>0769548431</eisbn><eisbn>9780769548432</eisbn><coden>IEEPAD</coden><abstract>This paper presents a detection mechanism that utilizes the accelerometer in a smart phone carried by an individual to measure the human movement and hence determine if a fall event has occurred. The model of the fall activities are characterized as a finite state machine, which transits from one state to another according to the data generated from the accelerometer. The presented detection mechanism utilizes the finite state machine to identify different types of falls, including forward falls, backward falls, and lateral falls. Experiments were conducted to evaluate the performance of the presented mechanism. The results show that the mechanism can effectively distinguish between actual fall events and normal activities such as squatting, and walking up and down stairs.</abstract><pub>IEEE</pub><doi>10.1109/UIC-ATC.2012.153</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467330841
ispartof 2012 9th International Conference on Ubiquitous Intelligence and Computing and 9th International Conference on Autonomic and Trusted Computing, 2012, p.735-739
issn
language eng
recordid cdi_ieee_primary_6332075
source IEEE Electronic Library (IEL) Conference Proceedings
subjects accelerometer
Accelerometers
Automata
Conferences
fall detecion
finite state machine
Injuries
Legged locomotion
Sensitivity
Smart phones
title A Finite State Machine-Based Fall Detection Mechanism on Smartphones
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A52%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Finite%20State%20Machine-Based%20Fall%20Detection%20Mechanism%20on%20Smartphones&rft.btitle=2012%209th%20International%20Conference%20on%20Ubiquitous%20Intelligence%20and%20Computing%20and%209th%20International%20Conference%20on%20Autonomic%20and%20Trusted%20Computing&rft.au=Shang-Lin%20Hsieh&rft.date=2012-09&rft.spage=735&rft.epage=739&rft.pages=735-739&rft.isbn=1467330841&rft.isbn_list=9781467330848&rft.coden=IEEPAD&rft_id=info:doi/10.1109/UIC-ATC.2012.153&rft_dat=%3Cieee_6IE%3E6332075%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769548431&rft.eisbn_list=9780769548432&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6332075&rfr_iscdi=true