Automatic Detection of Atrial Fibrillation in Cardiac Vibration Signals
We present a study on the feasibility of the automatic detection of atrial fibrillation (AF) from cardiac vibration signals (ballistocardiograms/BCGs) recorded by unobtrusive bed-mounted sensors. The proposed system is intended as a screening and monitoring tool in home-healthcare applications and n...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2013-01, Vol.17 (1), p.162-171 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 171 |
---|---|
container_issue | 1 |
container_start_page | 162 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 17 |
creator | Bruser, C. Diesel, J. Zink, M. D. H. Winter, S. Schauerte, P. Leonhardt, S. |
description | We present a study on the feasibility of the automatic detection of atrial fibrillation (AF) from cardiac vibration signals (ballistocardiograms/BCGs) recorded by unobtrusive bed-mounted sensors. The proposed system is intended as a screening and monitoring tool in home-healthcare applications and not as a replacement for ECG-based methods used in clinical environments. Based on the BCG data recorded in a study with ten AF patients, we evaluate and rank seven popular machine learning algorithms (naive Bayes, linear and quadratic discriminant analysis, support vector machines, random forests as well as bagged and boosted trees) for their performance in separating 30-s long BCG epochs into one of three classes: sinus rhythm, AF, and artifact. For each algorithm, feature subsets of a set of statistical time-frequency-domain and time-domain features were selected based on the mutual information between features and class labels as well as the first- and second-order interactions among features. The classifiers were evaluated on a set of 856 epochs by means of tenfold cross validation. The best algorithm (random forests) achieved a Matthews correlation coefficient, mean sensitivity, and mean specificity of 0.921, 0.938, and 0.982, respectively. |
doi_str_mv | 10.1109/TITB.2012.2225067 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6331528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6331528</ieee_id><sourcerecordid>1459977727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-26aa593d2cf1e3876032c6e1bab29a6a98eacf8bb98503e9655b717661cf7f703</originalsourceid><addsrcrecordid>eNo9kE9PAjEQxRujEYJ8AGNi9uhlsZ3Sf0dEQRISD6LXplu6pmaXxXb34Le3uMBcZvLmzcvkh9AtwRNCsHrcrDZPE8AEJgDAMBcXaAiEyxwAy8vTTNR0gMYxfuNUMkmKX6MBUCw5ozBEy1nXNrVpvc2eXets65td1pTZrA3eVNnCF8FXlfmX_S6bm7D1xmafSe_Fd_-1M1W8QVdlam587CP0sXjZzF_z9dtyNZ-tc0u5anPgxjBFt2BL4qgUHFOw3JHCFKAMN0o6Y0tZFEoyTJ3ijBWCCM6JLUUpMB2hhz53H5qfzsVW1z5al17cuaaLmkyZUkIIEMlKeqsNTYzBlXoffG3CryZYHxDqA0J9QKiPCNPN_TG-K2q3PV-cgCXDXW_wzrnzmlNKGEj6B6n3dBU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1459977727</pqid></control><display><type>article</type><title>Automatic Detection of Atrial Fibrillation in Cardiac Vibration Signals</title><source>IEEE Electronic Library (IEL)</source><creator>Bruser, C. ; Diesel, J. ; Zink, M. D. H. ; Winter, S. ; Schauerte, P. ; Leonhardt, S.</creator><creatorcontrib>Bruser, C. ; Diesel, J. ; Zink, M. D. H. ; Winter, S. ; Schauerte, P. ; Leonhardt, S.</creatorcontrib><description>We present a study on the feasibility of the automatic detection of atrial fibrillation (AF) from cardiac vibration signals (ballistocardiograms/BCGs) recorded by unobtrusive bed-mounted sensors. The proposed system is intended as a screening and monitoring tool in home-healthcare applications and not as a replacement for ECG-based methods used in clinical environments. Based on the BCG data recorded in a study with ten AF patients, we evaluate and rank seven popular machine learning algorithms (naive Bayes, linear and quadratic discriminant analysis, support vector machines, random forests as well as bagged and boosted trees) for their performance in separating 30-s long BCG epochs into one of three classes: sinus rhythm, AF, and artifact. For each algorithm, feature subsets of a set of statistical time-frequency-domain and time-domain features were selected based on the mutual information between features and class labels as well as the first- and second-order interactions among features. The classifiers were evaluated on a set of 856 epochs by means of tenfold cross validation. The best algorithm (random forests) achieved a Matthews correlation coefficient, mean sensitivity, and mean specificity of 0.921, 0.938, and 0.982, respectively.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/TITB.2012.2225067</identifier><identifier>PMID: 23086532</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aged ; Aged, 80 and over ; Algorithms ; Atrial fibrillation (AF) ; Atrial Fibrillation - diagnosis ; Atrial Fibrillation - physiopathology ; ballistocardiography (BCG) ; Ballistocardiography - methods ; Bayes Theorem ; classification ; Electrocardiography ; Female ; Humans ; Male ; Middle Aged ; Monitoring ; Reproducibility of Results ; Rhythm ; Sensors ; Signal Processing, Computer-Assisted ; Spectrogram ; Vibrations</subject><ispartof>IEEE journal of biomedical and health informatics, 2013-01, Vol.17 (1), p.162-171</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-26aa593d2cf1e3876032c6e1bab29a6a98eacf8bb98503e9655b717661cf7f703</citedby><cites>FETCH-LOGICAL-c369t-26aa593d2cf1e3876032c6e1bab29a6a98eacf8bb98503e9655b717661cf7f703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6331528$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6331528$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23086532$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bruser, C.</creatorcontrib><creatorcontrib>Diesel, J.</creatorcontrib><creatorcontrib>Zink, M. D. H.</creatorcontrib><creatorcontrib>Winter, S.</creatorcontrib><creatorcontrib>Schauerte, P.</creatorcontrib><creatorcontrib>Leonhardt, S.</creatorcontrib><title>Automatic Detection of Atrial Fibrillation in Cardiac Vibration Signals</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>We present a study on the feasibility of the automatic detection of atrial fibrillation (AF) from cardiac vibration signals (ballistocardiograms/BCGs) recorded by unobtrusive bed-mounted sensors. The proposed system is intended as a screening and monitoring tool in home-healthcare applications and not as a replacement for ECG-based methods used in clinical environments. Based on the BCG data recorded in a study with ten AF patients, we evaluate and rank seven popular machine learning algorithms (naive Bayes, linear and quadratic discriminant analysis, support vector machines, random forests as well as bagged and boosted trees) for their performance in separating 30-s long BCG epochs into one of three classes: sinus rhythm, AF, and artifact. For each algorithm, feature subsets of a set of statistical time-frequency-domain and time-domain features were selected based on the mutual information between features and class labels as well as the first- and second-order interactions among features. The classifiers were evaluated on a set of 856 epochs by means of tenfold cross validation. The best algorithm (random forests) achieved a Matthews correlation coefficient, mean sensitivity, and mean specificity of 0.921, 0.938, and 0.982, respectively.</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Algorithms</subject><subject>Atrial fibrillation (AF)</subject><subject>Atrial Fibrillation - diagnosis</subject><subject>Atrial Fibrillation - physiopathology</subject><subject>ballistocardiography (BCG)</subject><subject>Ballistocardiography - methods</subject><subject>Bayes Theorem</subject><subject>classification</subject><subject>Electrocardiography</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Monitoring</subject><subject>Reproducibility of Results</subject><subject>Rhythm</subject><subject>Sensors</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Spectrogram</subject><subject>Vibrations</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kE9PAjEQxRujEYJ8AGNi9uhlsZ3Sf0dEQRISD6LXplu6pmaXxXb34Le3uMBcZvLmzcvkh9AtwRNCsHrcrDZPE8AEJgDAMBcXaAiEyxwAy8vTTNR0gMYxfuNUMkmKX6MBUCw5ozBEy1nXNrVpvc2eXets65td1pTZrA3eVNnCF8FXlfmX_S6bm7D1xmafSe_Fd_-1M1W8QVdlam587CP0sXjZzF_z9dtyNZ-tc0u5anPgxjBFt2BL4qgUHFOw3JHCFKAMN0o6Y0tZFEoyTJ3ijBWCCM6JLUUpMB2hhz53H5qfzsVW1z5al17cuaaLmkyZUkIIEMlKeqsNTYzBlXoffG3CryZYHxDqA0J9QKiPCNPN_TG-K2q3PV-cgCXDXW_wzrnzmlNKGEj6B6n3dBU</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Bruser, C.</creator><creator>Diesel, J.</creator><creator>Zink, M. D. H.</creator><creator>Winter, S.</creator><creator>Schauerte, P.</creator><creator>Leonhardt, S.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201301</creationdate><title>Automatic Detection of Atrial Fibrillation in Cardiac Vibration Signals</title><author>Bruser, C. ; Diesel, J. ; Zink, M. D. H. ; Winter, S. ; Schauerte, P. ; Leonhardt, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-26aa593d2cf1e3876032c6e1bab29a6a98eacf8bb98503e9655b717661cf7f703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Algorithms</topic><topic>Atrial fibrillation (AF)</topic><topic>Atrial Fibrillation - diagnosis</topic><topic>Atrial Fibrillation - physiopathology</topic><topic>ballistocardiography (BCG)</topic><topic>Ballistocardiography - methods</topic><topic>Bayes Theorem</topic><topic>classification</topic><topic>Electrocardiography</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Monitoring</topic><topic>Reproducibility of Results</topic><topic>Rhythm</topic><topic>Sensors</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Spectrogram</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruser, C.</creatorcontrib><creatorcontrib>Diesel, J.</creatorcontrib><creatorcontrib>Zink, M. D. H.</creatorcontrib><creatorcontrib>Winter, S.</creatorcontrib><creatorcontrib>Schauerte, P.</creatorcontrib><creatorcontrib>Leonhardt, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bruser, C.</au><au>Diesel, J.</au><au>Zink, M. D. H.</au><au>Winter, S.</au><au>Schauerte, P.</au><au>Leonhardt, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Detection of Atrial Fibrillation in Cardiac Vibration Signals</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2013-01</date><risdate>2013</risdate><volume>17</volume><issue>1</issue><spage>162</spage><epage>171</epage><pages>162-171</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>We present a study on the feasibility of the automatic detection of atrial fibrillation (AF) from cardiac vibration signals (ballistocardiograms/BCGs) recorded by unobtrusive bed-mounted sensors. The proposed system is intended as a screening and monitoring tool in home-healthcare applications and not as a replacement for ECG-based methods used in clinical environments. Based on the BCG data recorded in a study with ten AF patients, we evaluate and rank seven popular machine learning algorithms (naive Bayes, linear and quadratic discriminant analysis, support vector machines, random forests as well as bagged and boosted trees) for their performance in separating 30-s long BCG epochs into one of three classes: sinus rhythm, AF, and artifact. For each algorithm, feature subsets of a set of statistical time-frequency-domain and time-domain features were selected based on the mutual information between features and class labels as well as the first- and second-order interactions among features. The classifiers were evaluated on a set of 856 epochs by means of tenfold cross validation. The best algorithm (random forests) achieved a Matthews correlation coefficient, mean sensitivity, and mean specificity of 0.921, 0.938, and 0.982, respectively.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23086532</pmid><doi>10.1109/TITB.2012.2225067</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2013-01, Vol.17 (1), p.162-171 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_ieee_primary_6331528 |
source | IEEE Electronic Library (IEL) |
subjects | Aged Aged, 80 and over Algorithms Atrial fibrillation (AF) Atrial Fibrillation - diagnosis Atrial Fibrillation - physiopathology ballistocardiography (BCG) Ballistocardiography - methods Bayes Theorem classification Electrocardiography Female Humans Male Middle Aged Monitoring Reproducibility of Results Rhythm Sensors Signal Processing, Computer-Assisted Spectrogram Vibrations |
title | Automatic Detection of Atrial Fibrillation in Cardiac Vibration Signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T09%3A57%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Detection%20of%20Atrial%20Fibrillation%20in%20Cardiac%20Vibration%20Signals&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Bruser,%20C.&rft.date=2013-01&rft.volume=17&rft.issue=1&rft.spage=162&rft.epage=171&rft.pages=162-171&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/TITB.2012.2225067&rft_dat=%3Cproquest_RIE%3E1459977727%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1459977727&rft_id=info:pmid/23086532&rft_ieee_id=6331528&rfr_iscdi=true |