Gait analysis and identification
An efficient framework were proposed for identifying individuals from gait via feature-based method based on 3D motion capture data. Three different extraction methods were applied to achieve gait signatures. The average identification rate was over 93% with best result close to 100% in a 35 subject...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Jie Hong Jinsheng Kang Price, M. E. |
description | An efficient framework were proposed for identifying individuals from gait via feature-based method based on 3D motion capture data. Three different extraction methods were applied to achieve gait signatures. The average identification rate was over 93% with best result close to 100% in a 35 subject database. In additional, gait attractiveness was analyzed via Principle component analysis and linear regression method. A systematic relationship was found between the motions of individual markers and the attractiveness ratings. In a linear equation, ln(PCA1) and ln(PCA2) predicted ln(attract_value) with reasonable accuracy. |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6330517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6330517</ieee_id><sourcerecordid>6330517</sourcerecordid><originalsourceid>FETCH-ieee_primary_63305173</originalsourceid><addsrcrecordid>eNpjZOC1NLcwtDSwMDWxNDAwY4bwTczMjQ3NjYwMORh4i4uzDIDAwtDczMiIk0HBPTGzRCExLzGnsjizGMhIUchMSc0ryUzLTE4syczP42FgTUvMKU7lhdLcDNJuriHOHrqZqamp8QVFmbmJRZXxZsbGBqaG5sb4ZQE_CCro</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Gait analysis and identification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jie Hong ; Jinsheng Kang ; Price, M. E.</creator><creatorcontrib>Jie Hong ; Jinsheng Kang ; Price, M. E.</creatorcontrib><description>An efficient framework were proposed for identifying individuals from gait via feature-based method based on 3D motion capture data. Three different extraction methods were applied to achieve gait signatures. The average identification rate was over 93% with best result close to 100% in a 35 subject database. In additional, gait attractiveness was analyzed via Principle component analysis and linear regression method. A systematic relationship was found between the motions of individual markers and the attractiveness ratings. In a linear equation, ln(PCA1) and ln(PCA2) predicted ln(attract_value) with reasonable accuracy.</description><identifier>ISBN: 9781467317221</identifier><identifier>ISBN: 1467317225</identifier><identifier>EISBN: 9781908549006</identifier><identifier>EISBN: 1908549009</identifier><language>eng</language><publisher>IEEE</publisher><subject>Equations ; Feature extraction ; Gait identify ; gait signature ; Humans ; Legged locomotion ; Linear regression ; Pattern recognition ; Principal component analysis ; Principle component analysis</subject><ispartof>18th International Conference on Automation and Computing (ICAC), 2012, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6330517$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6330517$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jie Hong</creatorcontrib><creatorcontrib>Jinsheng Kang</creatorcontrib><creatorcontrib>Price, M. E.</creatorcontrib><title>Gait analysis and identification</title><title>18th International Conference on Automation and Computing (ICAC)</title><addtitle>IConAC</addtitle><description>An efficient framework were proposed for identifying individuals from gait via feature-based method based on 3D motion capture data. Three different extraction methods were applied to achieve gait signatures. The average identification rate was over 93% with best result close to 100% in a 35 subject database. In additional, gait attractiveness was analyzed via Principle component analysis and linear regression method. A systematic relationship was found between the motions of individual markers and the attractiveness ratings. In a linear equation, ln(PCA1) and ln(PCA2) predicted ln(attract_value) with reasonable accuracy.</description><subject>Equations</subject><subject>Feature extraction</subject><subject>Gait identify</subject><subject>gait signature</subject><subject>Humans</subject><subject>Legged locomotion</subject><subject>Linear regression</subject><subject>Pattern recognition</subject><subject>Principal component analysis</subject><subject>Principle component analysis</subject><isbn>9781467317221</isbn><isbn>1467317225</isbn><isbn>9781908549006</isbn><isbn>1908549009</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpjZOC1NLcwtDSwMDWxNDAwY4bwTczMjQ3NjYwMORh4i4uzDIDAwtDczMiIk0HBPTGzRCExLzGnsjizGMhIUchMSc0ryUzLTE4syczP42FgTUvMKU7lhdLcDNJuriHOHrqZqamp8QVFmbmJRZXxZsbGBqaG5sb4ZQE_CCro</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Jie Hong</creator><creator>Jinsheng Kang</creator><creator>Price, M. E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>Gait analysis and identification</title><author>Jie Hong ; Jinsheng Kang ; Price, M. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_63305173</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Equations</topic><topic>Feature extraction</topic><topic>Gait identify</topic><topic>gait signature</topic><topic>Humans</topic><topic>Legged locomotion</topic><topic>Linear regression</topic><topic>Pattern recognition</topic><topic>Principal component analysis</topic><topic>Principle component analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Jie Hong</creatorcontrib><creatorcontrib>Jinsheng Kang</creatorcontrib><creatorcontrib>Price, M. E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jie Hong</au><au>Jinsheng Kang</au><au>Price, M. E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Gait analysis and identification</atitle><btitle>18th International Conference on Automation and Computing (ICAC)</btitle><stitle>IConAC</stitle><date>2012-09</date><risdate>2012</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>9781467317221</isbn><isbn>1467317225</isbn><eisbn>9781908549006</eisbn><eisbn>1908549009</eisbn><abstract>An efficient framework were proposed for identifying individuals from gait via feature-based method based on 3D motion capture data. Three different extraction methods were applied to achieve gait signatures. The average identification rate was over 93% with best result close to 100% in a 35 subject database. In additional, gait attractiveness was analyzed via Principle component analysis and linear regression method. A systematic relationship was found between the motions of individual markers and the attractiveness ratings. In a linear equation, ln(PCA1) and ln(PCA2) predicted ln(attract_value) with reasonable accuracy.</abstract><pub>IEEE</pub></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467317221 |
ispartof | 18th International Conference on Automation and Computing (ICAC), 2012, p.1-6 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6330517 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Equations Feature extraction Gait identify gait signature Humans Legged locomotion Linear regression Pattern recognition Principal component analysis Principle component analysis |
title | Gait analysis and identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A31%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Gait%20analysis%20and%20identification&rft.btitle=18th%20International%20Conference%20on%20Automation%20and%20Computing%20(ICAC)&rft.au=Jie%20Hong&rft.date=2012-09&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=9781467317221&rft.isbn_list=1467317225&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E6330517%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781908549006&rft.eisbn_list=1908549009&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6330517&rfr_iscdi=true |