Gait analysis and identification

An efficient framework were proposed for identifying individuals from gait via feature-based method based on 3D motion capture data. Three different extraction methods were applied to achieve gait signatures. The average identification rate was over 93% with best result close to 100% in a 35 subject...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jie Hong, Jinsheng Kang, Price, M. E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Jie Hong
Jinsheng Kang
Price, M. E.
description An efficient framework were proposed for identifying individuals from gait via feature-based method based on 3D motion capture data. Three different extraction methods were applied to achieve gait signatures. The average identification rate was over 93% with best result close to 100% in a 35 subject database. In additional, gait attractiveness was analyzed via Principle component analysis and linear regression method. A systematic relationship was found between the motions of individual markers and the attractiveness ratings. In a linear equation, ln(PCA1) and ln(PCA2) predicted ln(attract_value) with reasonable accuracy.
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6330517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6330517</ieee_id><sourcerecordid>6330517</sourcerecordid><originalsourceid>FETCH-ieee_primary_63305173</originalsourceid><addsrcrecordid>eNpjZOC1NLcwtDSwMDWxNDAwY4bwTczMjQ3NjYwMORh4i4uzDIDAwtDczMiIk0HBPTGzRCExLzGnsjizGMhIUchMSc0ryUzLTE4syczP42FgTUvMKU7lhdLcDNJuriHOHrqZqamp8QVFmbmJRZXxZsbGBqaG5sb4ZQE_CCro</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Gait analysis and identification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jie Hong ; Jinsheng Kang ; Price, M. E.</creator><creatorcontrib>Jie Hong ; Jinsheng Kang ; Price, M. E.</creatorcontrib><description>An efficient framework were proposed for identifying individuals from gait via feature-based method based on 3D motion capture data. Three different extraction methods were applied to achieve gait signatures. The average identification rate was over 93% with best result close to 100% in a 35 subject database. In additional, gait attractiveness was analyzed via Principle component analysis and linear regression method. A systematic relationship was found between the motions of individual markers and the attractiveness ratings. In a linear equation, ln(PCA1) and ln(PCA2) predicted ln(attract_value) with reasonable accuracy.</description><identifier>ISBN: 9781467317221</identifier><identifier>ISBN: 1467317225</identifier><identifier>EISBN: 9781908549006</identifier><identifier>EISBN: 1908549009</identifier><language>eng</language><publisher>IEEE</publisher><subject>Equations ; Feature extraction ; Gait identify ; gait signature ; Humans ; Legged locomotion ; Linear regression ; Pattern recognition ; Principal component analysis ; Principle component analysis</subject><ispartof>18th International Conference on Automation and Computing (ICAC), 2012, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6330517$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6330517$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jie Hong</creatorcontrib><creatorcontrib>Jinsheng Kang</creatorcontrib><creatorcontrib>Price, M. E.</creatorcontrib><title>Gait analysis and identification</title><title>18th International Conference on Automation and Computing (ICAC)</title><addtitle>IConAC</addtitle><description>An efficient framework were proposed for identifying individuals from gait via feature-based method based on 3D motion capture data. Three different extraction methods were applied to achieve gait signatures. The average identification rate was over 93% with best result close to 100% in a 35 subject database. In additional, gait attractiveness was analyzed via Principle component analysis and linear regression method. A systematic relationship was found between the motions of individual markers and the attractiveness ratings. In a linear equation, ln(PCA1) and ln(PCA2) predicted ln(attract_value) with reasonable accuracy.</description><subject>Equations</subject><subject>Feature extraction</subject><subject>Gait identify</subject><subject>gait signature</subject><subject>Humans</subject><subject>Legged locomotion</subject><subject>Linear regression</subject><subject>Pattern recognition</subject><subject>Principal component analysis</subject><subject>Principle component analysis</subject><isbn>9781467317221</isbn><isbn>1467317225</isbn><isbn>9781908549006</isbn><isbn>1908549009</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpjZOC1NLcwtDSwMDWxNDAwY4bwTczMjQ3NjYwMORh4i4uzDIDAwtDczMiIk0HBPTGzRCExLzGnsjizGMhIUchMSc0ryUzLTE4syczP42FgTUvMKU7lhdLcDNJuriHOHrqZqamp8QVFmbmJRZXxZsbGBqaG5sb4ZQE_CCro</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Jie Hong</creator><creator>Jinsheng Kang</creator><creator>Price, M. E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>Gait analysis and identification</title><author>Jie Hong ; Jinsheng Kang ; Price, M. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_63305173</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Equations</topic><topic>Feature extraction</topic><topic>Gait identify</topic><topic>gait signature</topic><topic>Humans</topic><topic>Legged locomotion</topic><topic>Linear regression</topic><topic>Pattern recognition</topic><topic>Principal component analysis</topic><topic>Principle component analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Jie Hong</creatorcontrib><creatorcontrib>Jinsheng Kang</creatorcontrib><creatorcontrib>Price, M. E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jie Hong</au><au>Jinsheng Kang</au><au>Price, M. E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Gait analysis and identification</atitle><btitle>18th International Conference on Automation and Computing (ICAC)</btitle><stitle>IConAC</stitle><date>2012-09</date><risdate>2012</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>9781467317221</isbn><isbn>1467317225</isbn><eisbn>9781908549006</eisbn><eisbn>1908549009</eisbn><abstract>An efficient framework were proposed for identifying individuals from gait via feature-based method based on 3D motion capture data. Three different extraction methods were applied to achieve gait signatures. The average identification rate was over 93% with best result close to 100% in a 35 subject database. In additional, gait attractiveness was analyzed via Principle component analysis and linear regression method. A systematic relationship was found between the motions of individual markers and the attractiveness ratings. In a linear equation, ln(PCA1) and ln(PCA2) predicted ln(attract_value) with reasonable accuracy.</abstract><pub>IEEE</pub></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467317221
ispartof 18th International Conference on Automation and Computing (ICAC), 2012, p.1-6
issn
language eng
recordid cdi_ieee_primary_6330517
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Equations
Feature extraction
Gait identify
gait signature
Humans
Legged locomotion
Linear regression
Pattern recognition
Principal component analysis
Principle component analysis
title Gait analysis and identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A31%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Gait%20analysis%20and%20identification&rft.btitle=18th%20International%20Conference%20on%20Automation%20and%20Computing%20(ICAC)&rft.au=Jie%20Hong&rft.date=2012-09&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=9781467317221&rft.isbn_list=1467317225&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E6330517%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781908549006&rft.eisbn_list=1908549009&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6330517&rfr_iscdi=true