EEG biometric identification: Repeatability and influence of movement-related EEG

This paper describes use of EEG signal as biometric characteristic for person identification. We focus on the problem of repeatability of the identification process, and influence of the movement-related EEG on results of identification. Used database of EEG signals consists of two sessions, obtaine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kostilek, M., St'astny, J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150
container_issue
container_start_page 147
container_title
container_volume
creator Kostilek, M.
St'astny, J.
description This paper describes use of EEG signal as biometric characteristic for person identification. We focus on the problem of repeatability of the identification process, and influence of the movement-related EEG on results of identification. Used database of EEG signals consists of two sessions, obtained approximately one year apart. We use Frequency-Zooming Auto-Regression modeling and Mahalanobis distance-based classifier for classification of EEG segments, which leads to subject identification with success rate for single session identification up to 98%. When the earlier session is used for classifier training and the later session for testing, the highest success rate with our identification algorithm is 87.1%. Experiments show that use of the movement-related EEG leads to better identification results.
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6328854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6328854</ieee_id><sourcerecordid>6328854</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-252bec738b82e7142d4c8b01cc1f156a9b05994dedd7d0af337e9cde6a48eece3</originalsourceid><addsrcrecordid>eNotjMtKAzEUQCMqWOt8gZv8wECSm6c7KWMVCqLouuRxA5F5lJko9O8d0LM5q3MuSOOMtUxozhg4uCS3XGoD3GlQV2TDLYPWCBA3pFmWL7ZiueEAG_LWdXsayjRgnUukJeFYSy7R1zKND_QdT-irD6Uv9Uz9mGgZc_-NY0Q6ZTpMPzisRTtj7ysmut7uyHX2_YLNv7fk86n72D23h9f9y-7x0BZuVG2FEgGjARusQMOlSDLawHiMPHOlvQtMOScTpmQS8xnAoIsJtZcWMSJsyf3ftyDi8TSXwc_nowZhrZLwC9IuTbE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>EEG biometric identification: Repeatability and influence of movement-related EEG</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kostilek, M. ; St'astny, J.</creator><creatorcontrib>Kostilek, M. ; St'astny, J.</creatorcontrib><description>This paper describes use of EEG signal as biometric characteristic for person identification. We focus on the problem of repeatability of the identification process, and influence of the movement-related EEG on results of identification. Used database of EEG signals consists of two sessions, obtained approximately one year apart. We use Frequency-Zooming Auto-Regression modeling and Mahalanobis distance-based classifier for classification of EEG segments, which leads to subject identification with success rate for single session identification up to 98%. When the earlier session is used for classifier training and the later session for testing, the highest success rate with our identification algorithm is 87.1%. Experiments show that use of the movement-related EEG leads to better identification results.</description><identifier>ISSN: 1803-7232</identifier><identifier>ISBN: 1467319635</identifier><identifier>ISBN: 9781467319638</identifier><identifier>EISBN: 9788026100393</identifier><identifier>EISBN: 8026100395</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brain modeling ; Electrodes ; Electroencephalography ; Frequency modulation ; Rhythm ; Testing</subject><ispartof>2012 International Conference on Applied Electronics, 2012, p.147-150</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6328854$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6328854$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kostilek, M.</creatorcontrib><creatorcontrib>St'astny, J.</creatorcontrib><title>EEG biometric identification: Repeatability and influence of movement-related EEG</title><title>2012 International Conference on Applied Electronics</title><addtitle>AE</addtitle><description>This paper describes use of EEG signal as biometric characteristic for person identification. We focus on the problem of repeatability of the identification process, and influence of the movement-related EEG on results of identification. Used database of EEG signals consists of two sessions, obtained approximately one year apart. We use Frequency-Zooming Auto-Regression modeling and Mahalanobis distance-based classifier for classification of EEG segments, which leads to subject identification with success rate for single session identification up to 98%. When the earlier session is used for classifier training and the later session for testing, the highest success rate with our identification algorithm is 87.1%. Experiments show that use of the movement-related EEG leads to better identification results.</description><subject>Brain modeling</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Frequency modulation</subject><subject>Rhythm</subject><subject>Testing</subject><issn>1803-7232</issn><isbn>1467319635</isbn><isbn>9781467319638</isbn><isbn>9788026100393</isbn><isbn>8026100395</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMtKAzEUQCMqWOt8gZv8wECSm6c7KWMVCqLouuRxA5F5lJko9O8d0LM5q3MuSOOMtUxozhg4uCS3XGoD3GlQV2TDLYPWCBA3pFmWL7ZiueEAG_LWdXsayjRgnUukJeFYSy7R1zKND_QdT-irD6Uv9Uz9mGgZc_-NY0Q6ZTpMPzisRTtj7ysmut7uyHX2_YLNv7fk86n72D23h9f9y-7x0BZuVG2FEgGjARusQMOlSDLawHiMPHOlvQtMOScTpmQS8xnAoIsJtZcWMSJsyf3ftyDi8TSXwc_nowZhrZLwC9IuTbE</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Kostilek, M.</creator><creator>St'astny, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>EEG biometric identification: Repeatability and influence of movement-related EEG</title><author>Kostilek, M. ; St'astny, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-252bec738b82e7142d4c8b01cc1f156a9b05994dedd7d0af337e9cde6a48eece3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Brain modeling</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Frequency modulation</topic><topic>Rhythm</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Kostilek, M.</creatorcontrib><creatorcontrib>St'astny, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kostilek, M.</au><au>St'astny, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>EEG biometric identification: Repeatability and influence of movement-related EEG</atitle><btitle>2012 International Conference on Applied Electronics</btitle><stitle>AE</stitle><date>2012-09</date><risdate>2012</risdate><spage>147</spage><epage>150</epage><pages>147-150</pages><issn>1803-7232</issn><isbn>1467319635</isbn><isbn>9781467319638</isbn><eisbn>9788026100393</eisbn><eisbn>8026100395</eisbn><abstract>This paper describes use of EEG signal as biometric characteristic for person identification. We focus on the problem of repeatability of the identification process, and influence of the movement-related EEG on results of identification. Used database of EEG signals consists of two sessions, obtained approximately one year apart. We use Frequency-Zooming Auto-Regression modeling and Mahalanobis distance-based classifier for classification of EEG segments, which leads to subject identification with success rate for single session identification up to 98%. When the earlier session is used for classifier training and the later session for testing, the highest success rate with our identification algorithm is 87.1%. Experiments show that use of the movement-related EEG leads to better identification results.</abstract><pub>IEEE</pub><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1803-7232
ispartof 2012 International Conference on Applied Electronics, 2012, p.147-150
issn 1803-7232
language eng
recordid cdi_ieee_primary_6328854
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Brain modeling
Electrodes
Electroencephalography
Frequency modulation
Rhythm
Testing
title EEG biometric identification: Repeatability and influence of movement-related EEG
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T21%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=EEG%20biometric%20identification:%20Repeatability%20and%20influence%20of%20movement-related%20EEG&rft.btitle=2012%20International%20Conference%20on%20Applied%20Electronics&rft.au=Kostilek,%20M.&rft.date=2012-09&rft.spage=147&rft.epage=150&rft.pages=147-150&rft.issn=1803-7232&rft.isbn=1467319635&rft.isbn_list=9781467319638&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E6328854%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9788026100393&rft.eisbn_list=8026100395&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6328854&rfr_iscdi=true