EEG biometric identification: Repeatability and influence of movement-related EEG
This paper describes use of EEG signal as biometric characteristic for person identification. We focus on the problem of repeatability of the identification process, and influence of the movement-related EEG on results of identification. Used database of EEG signals consists of two sessions, obtaine...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 150 |
---|---|
container_issue | |
container_start_page | 147 |
container_title | |
container_volume | |
creator | Kostilek, M. St'astny, J. |
description | This paper describes use of EEG signal as biometric characteristic for person identification. We focus on the problem of repeatability of the identification process, and influence of the movement-related EEG on results of identification. Used database of EEG signals consists of two sessions, obtained approximately one year apart. We use Frequency-Zooming Auto-Regression modeling and Mahalanobis distance-based classifier for classification of EEG segments, which leads to subject identification with success rate for single session identification up to 98%. When the earlier session is used for classifier training and the later session for testing, the highest success rate with our identification algorithm is 87.1%. Experiments show that use of the movement-related EEG leads to better identification results. |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6328854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6328854</ieee_id><sourcerecordid>6328854</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-252bec738b82e7142d4c8b01cc1f156a9b05994dedd7d0af337e9cde6a48eece3</originalsourceid><addsrcrecordid>eNotjMtKAzEUQCMqWOt8gZv8wECSm6c7KWMVCqLouuRxA5F5lJko9O8d0LM5q3MuSOOMtUxozhg4uCS3XGoD3GlQV2TDLYPWCBA3pFmWL7ZiueEAG_LWdXsayjRgnUukJeFYSy7R1zKND_QdT-irD6Uv9Uz9mGgZc_-NY0Q6ZTpMPzisRTtj7ysmut7uyHX2_YLNv7fk86n72D23h9f9y-7x0BZuVG2FEgGjARusQMOlSDLawHiMPHOlvQtMOScTpmQS8xnAoIsJtZcWMSJsyf3ftyDi8TSXwc_nowZhrZLwC9IuTbE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>EEG biometric identification: Repeatability and influence of movement-related EEG</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kostilek, M. ; St'astny, J.</creator><creatorcontrib>Kostilek, M. ; St'astny, J.</creatorcontrib><description>This paper describes use of EEG signal as biometric characteristic for person identification. We focus on the problem of repeatability of the identification process, and influence of the movement-related EEG on results of identification. Used database of EEG signals consists of two sessions, obtained approximately one year apart. We use Frequency-Zooming Auto-Regression modeling and Mahalanobis distance-based classifier for classification of EEG segments, which leads to subject identification with success rate for single session identification up to 98%. When the earlier session is used for classifier training and the later session for testing, the highest success rate with our identification algorithm is 87.1%. Experiments show that use of the movement-related EEG leads to better identification results.</description><identifier>ISSN: 1803-7232</identifier><identifier>ISBN: 1467319635</identifier><identifier>ISBN: 9781467319638</identifier><identifier>EISBN: 9788026100393</identifier><identifier>EISBN: 8026100395</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brain modeling ; Electrodes ; Electroencephalography ; Frequency modulation ; Rhythm ; Testing</subject><ispartof>2012 International Conference on Applied Electronics, 2012, p.147-150</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6328854$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6328854$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kostilek, M.</creatorcontrib><creatorcontrib>St'astny, J.</creatorcontrib><title>EEG biometric identification: Repeatability and influence of movement-related EEG</title><title>2012 International Conference on Applied Electronics</title><addtitle>AE</addtitle><description>This paper describes use of EEG signal as biometric characteristic for person identification. We focus on the problem of repeatability of the identification process, and influence of the movement-related EEG on results of identification. Used database of EEG signals consists of two sessions, obtained approximately one year apart. We use Frequency-Zooming Auto-Regression modeling and Mahalanobis distance-based classifier for classification of EEG segments, which leads to subject identification with success rate for single session identification up to 98%. When the earlier session is used for classifier training and the later session for testing, the highest success rate with our identification algorithm is 87.1%. Experiments show that use of the movement-related EEG leads to better identification results.</description><subject>Brain modeling</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Frequency modulation</subject><subject>Rhythm</subject><subject>Testing</subject><issn>1803-7232</issn><isbn>1467319635</isbn><isbn>9781467319638</isbn><isbn>9788026100393</isbn><isbn>8026100395</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMtKAzEUQCMqWOt8gZv8wECSm6c7KWMVCqLouuRxA5F5lJko9O8d0LM5q3MuSOOMtUxozhg4uCS3XGoD3GlQV2TDLYPWCBA3pFmWL7ZiueEAG_LWdXsayjRgnUukJeFYSy7R1zKND_QdT-irD6Uv9Uz9mGgZc_-NY0Q6ZTpMPzisRTtj7ysmut7uyHX2_YLNv7fk86n72D23h9f9y-7x0BZuVG2FEgGjARusQMOlSDLawHiMPHOlvQtMOScTpmQS8xnAoIsJtZcWMSJsyf3ftyDi8TSXwc_nowZhrZLwC9IuTbE</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Kostilek, M.</creator><creator>St'astny, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>EEG biometric identification: Repeatability and influence of movement-related EEG</title><author>Kostilek, M. ; St'astny, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-252bec738b82e7142d4c8b01cc1f156a9b05994dedd7d0af337e9cde6a48eece3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Brain modeling</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Frequency modulation</topic><topic>Rhythm</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Kostilek, M.</creatorcontrib><creatorcontrib>St'astny, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kostilek, M.</au><au>St'astny, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>EEG biometric identification: Repeatability and influence of movement-related EEG</atitle><btitle>2012 International Conference on Applied Electronics</btitle><stitle>AE</stitle><date>2012-09</date><risdate>2012</risdate><spage>147</spage><epage>150</epage><pages>147-150</pages><issn>1803-7232</issn><isbn>1467319635</isbn><isbn>9781467319638</isbn><eisbn>9788026100393</eisbn><eisbn>8026100395</eisbn><abstract>This paper describes use of EEG signal as biometric characteristic for person identification. We focus on the problem of repeatability of the identification process, and influence of the movement-related EEG on results of identification. Used database of EEG signals consists of two sessions, obtained approximately one year apart. We use Frequency-Zooming Auto-Regression modeling and Mahalanobis distance-based classifier for classification of EEG segments, which leads to subject identification with success rate for single session identification up to 98%. When the earlier session is used for classifier training and the later session for testing, the highest success rate with our identification algorithm is 87.1%. Experiments show that use of the movement-related EEG leads to better identification results.</abstract><pub>IEEE</pub><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1803-7232 |
ispartof | 2012 International Conference on Applied Electronics, 2012, p.147-150 |
issn | 1803-7232 |
language | eng |
recordid | cdi_ieee_primary_6328854 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Brain modeling Electrodes Electroencephalography Frequency modulation Rhythm Testing |
title | EEG biometric identification: Repeatability and influence of movement-related EEG |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T21%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=EEG%20biometric%20identification:%20Repeatability%20and%20influence%20of%20movement-related%20EEG&rft.btitle=2012%20International%20Conference%20on%20Applied%20Electronics&rft.au=Kostilek,%20M.&rft.date=2012-09&rft.spage=147&rft.epage=150&rft.pages=147-150&rft.issn=1803-7232&rft.isbn=1467319635&rft.isbn_list=9781467319638&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E6328854%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9788026100393&rft.eisbn_list=8026100395&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6328854&rfr_iscdi=true |