Abnormal Object Detection Using Feedforward Model and Sequential Filters

Abnormal object detection and discrimisnation is a critical research area for vision-based surveillance systems. This paper proposes a novel algorithm for the detection and discrimination of abnormal objects, such as abandoned and stolen objects. The proposed algorithm consists of three stages and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jiman Kim, Bongnam Kang, Hai Wang, Daijin Kim
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75
container_issue
container_start_page 70
container_title
container_volume
creator Jiman Kim
Bongnam Kang
Hai Wang
Daijin Kim
description Abnormal object detection and discrimisnation is a critical research area for vision-based surveillance systems. This paper proposes a novel algorithm for the detection and discrimination of abnormal objects, such as abandoned and stolen objects. The proposed algorithm consists of three stages and three different filters. The three stages cooperate with each other using the feedforward model to enhance detection and discrimination performance, while the sequential filters efficiently reject falsely detected regions using three categories of information. The results of experiments conducted using public datasets indicate that the proposed algorithm is more accurate and has a lower false alarm ratio than the existing system.
doi_str_mv 10.1109/AVSS.2012.5
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6327987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6327987</ieee_id><sourcerecordid>6327987</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f966f39ad79a0ef67ea3b235c6052bcfc943dcbe738fbaa23eabca1ea97e213a3</originalsourceid><addsrcrecordid>eNotjL1OwzAURo0QElAyMbL4BRL8k9i5Y1Roi1TUIRSxVdfONXKVJpAEId6eSHCWc5bvY-xWikxKAffVa11nSkiVFWcsAVsKa6DI7Vzn7FrmxmqVA7xdsmQcj2KmlFYAXLFN5bp-OGHLd-5IfuIPNM2Kfcf3Y-ze-YqoCf3wjUPDn_uGWo5dw2v6_KJuivNuFduJhvGGXQRsR0r-vWD71ePLcpNud-unZbVNo7TFlAYwJmjAxgIKCsYSaqd04Y0olPPBQ64b78jqMjhEpQmdR0kIlpTUqBfs7u83EtHhY4gnHH4ORisLpdW_mtdNmQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Abnormal Object Detection Using Feedforward Model and Sequential Filters</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jiman Kim ; Bongnam Kang ; Hai Wang ; Daijin Kim</creator><creatorcontrib>Jiman Kim ; Bongnam Kang ; Hai Wang ; Daijin Kim</creatorcontrib><description>Abnormal object detection and discrimisnation is a critical research area for vision-based surveillance systems. This paper proposes a novel algorithm for the detection and discrimination of abnormal objects, such as abandoned and stolen objects. The proposed algorithm consists of three stages and three different filters. The three stages cooperate with each other using the feedforward model to enhance detection and discrimination performance, while the sequential filters efficiently reject falsely detected regions using three categories of information. The results of experiments conducted using public datasets indicate that the proposed algorithm is more accurate and has a lower false alarm ratio than the existing system.</description><identifier>ISBN: 146732499X</identifier><identifier>ISBN: 9781467324991</identifier><identifier>EISBN: 9780769547978</identifier><identifier>EISBN: 0769547974</identifier><identifier>DOI: 10.1109/AVSS.2012.5</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Conferences ; feedforward model ; Feedforward neural networks ; foreground region ; Image edge detection ; Nickel ; Object detection ; sequential filter ; static region ; Surveillance</subject><ispartof>2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance, 2012, p.70-75</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6327987$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6327987$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jiman Kim</creatorcontrib><creatorcontrib>Bongnam Kang</creatorcontrib><creatorcontrib>Hai Wang</creatorcontrib><creatorcontrib>Daijin Kim</creatorcontrib><title>Abnormal Object Detection Using Feedforward Model and Sequential Filters</title><title>2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance</title><addtitle>avss</addtitle><description>Abnormal object detection and discrimisnation is a critical research area for vision-based surveillance systems. This paper proposes a novel algorithm for the detection and discrimination of abnormal objects, such as abandoned and stolen objects. The proposed algorithm consists of three stages and three different filters. The three stages cooperate with each other using the feedforward model to enhance detection and discrimination performance, while the sequential filters efficiently reject falsely detected regions using three categories of information. The results of experiments conducted using public datasets indicate that the proposed algorithm is more accurate and has a lower false alarm ratio than the existing system.</description><subject>Accuracy</subject><subject>Conferences</subject><subject>feedforward model</subject><subject>Feedforward neural networks</subject><subject>foreground region</subject><subject>Image edge detection</subject><subject>Nickel</subject><subject>Object detection</subject><subject>sequential filter</subject><subject>static region</subject><subject>Surveillance</subject><isbn>146732499X</isbn><isbn>9781467324991</isbn><isbn>9780769547978</isbn><isbn>0769547974</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjL1OwzAURo0QElAyMbL4BRL8k9i5Y1Roi1TUIRSxVdfONXKVJpAEId6eSHCWc5bvY-xWikxKAffVa11nSkiVFWcsAVsKa6DI7Vzn7FrmxmqVA7xdsmQcj2KmlFYAXLFN5bp-OGHLd-5IfuIPNM2Kfcf3Y-ze-YqoCf3wjUPDn_uGWo5dw2v6_KJuivNuFduJhvGGXQRsR0r-vWD71ePLcpNud-unZbVNo7TFlAYwJmjAxgIKCsYSaqd04Y0olPPBQ64b78jqMjhEpQmdR0kIlpTUqBfs7u83EtHhY4gnHH4ORisLpdW_mtdNmQ</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Jiman Kim</creator><creator>Bongnam Kang</creator><creator>Hai Wang</creator><creator>Daijin Kim</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>Abnormal Object Detection Using Feedforward Model and Sequential Filters</title><author>Jiman Kim ; Bongnam Kang ; Hai Wang ; Daijin Kim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f966f39ad79a0ef67ea3b235c6052bcfc943dcbe738fbaa23eabca1ea97e213a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Conferences</topic><topic>feedforward model</topic><topic>Feedforward neural networks</topic><topic>foreground region</topic><topic>Image edge detection</topic><topic>Nickel</topic><topic>Object detection</topic><topic>sequential filter</topic><topic>static region</topic><topic>Surveillance</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiman Kim</creatorcontrib><creatorcontrib>Bongnam Kang</creatorcontrib><creatorcontrib>Hai Wang</creatorcontrib><creatorcontrib>Daijin Kim</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiman Kim</au><au>Bongnam Kang</au><au>Hai Wang</au><au>Daijin Kim</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Abnormal Object Detection Using Feedforward Model and Sequential Filters</atitle><btitle>2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance</btitle><stitle>avss</stitle><date>2012-09</date><risdate>2012</risdate><spage>70</spage><epage>75</epage><pages>70-75</pages><isbn>146732499X</isbn><isbn>9781467324991</isbn><eisbn>9780769547978</eisbn><eisbn>0769547974</eisbn><coden>IEEPAD</coden><abstract>Abnormal object detection and discrimisnation is a critical research area for vision-based surveillance systems. This paper proposes a novel algorithm for the detection and discrimination of abnormal objects, such as abandoned and stolen objects. The proposed algorithm consists of three stages and three different filters. The three stages cooperate with each other using the feedforward model to enhance detection and discrimination performance, while the sequential filters efficiently reject falsely detected regions using three categories of information. The results of experiments conducted using public datasets indicate that the proposed algorithm is more accurate and has a lower false alarm ratio than the existing system.</abstract><pub>IEEE</pub><doi>10.1109/AVSS.2012.5</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 146732499X
ispartof 2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance, 2012, p.70-75
issn
language eng
recordid cdi_ieee_primary_6327987
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Conferences
feedforward model
Feedforward neural networks
foreground region
Image edge detection
Nickel
Object detection
sequential filter
static region
Surveillance
title Abnormal Object Detection Using Feedforward Model and Sequential Filters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A00%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Abnormal%20Object%20Detection%20Using%20Feedforward%20Model%20and%20Sequential%20Filters&rft.btitle=2012%20IEEE%20Ninth%20International%20Conference%20on%20Advanced%20Video%20and%20Signal-Based%20Surveillance&rft.au=Jiman%20Kim&rft.date=2012-09&rft.spage=70&rft.epage=75&rft.pages=70-75&rft.isbn=146732499X&rft.isbn_list=9781467324991&rft.coden=IEEPAD&rft_id=info:doi/10.1109/AVSS.2012.5&rft_dat=%3Cieee_6IE%3E6327987%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769547978&rft.eisbn_list=0769547974&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6327987&rfr_iscdi=true