A Context-Aware Running Route Recommender Learning from User Histories Using Artificial Neural Networks

So far, several websites exist where runners can request route information. Those systems are rather complex and lack a mobile-specific design. Thus, we propose a mobile running route recommender system (RRR) which supports the user while running or while planning the running route. The gathering an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Knoch, S., Chapko, A., Emrich, A., Werth, D., Loos, P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110
container_issue
container_start_page 106
container_title
container_volume
creator Knoch, S.
Chapko, A.
Emrich, A.
Werth, D.
Loos, P.
description So far, several websites exist where runners can request route information. Those systems are rather complex and lack a mobile-specific design. Thus, we propose a mobile running route recommender system (RRR) which supports the user while running or while planning the running route. The gathering and modeling of the route and its context/environment is discussed in respect of computational performance. A four dimensional plugin based ranking function is established that considers location-, time-, content-, and community-specific route features which cover all data types in our database. A conceptual model shows how the runner's physical condition could be involved by predicting the heart rate for certain routes. Therefore, Artificial Neural Networks are chosen as data mining methodology to extend the existing recommender system.
doi_str_mv 10.1109/DEXA.2012.49
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6327411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6327411</ieee_id><sourcerecordid>6327411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-ab0db392321859a727bb961245ab72eff17ad12c4456cf3361053ed225cd4b693</originalsourceid><addsrcrecordid>eNotjF1LwzAUhoMf4Jy7886b_oHOnJM0aS7L3JwwFIYD70bano7o2kqSMf331unVw_M-8DJ2C3wKwM39w_ytmCIHnEpzxkYodJ4KA9k5mxidg1RaoEJQF2wEGZpUQp5fsesQ3jkHY3IxYrsimfVdpK-YFkfrKVkfus51u2TdH-JgVPVtS11NPlmR9afU-L5NNmGYli7E3jsKg_6WwkfXuMrZffJMB39CPPb-I9ywy8buA03-OWabxfx1tkxXL49Ps2KVVgh5TG3J61IYFINlxmrUZWkUoMxsqZGaBrStASspM1U1QijgmaAaMatqWSojxuzu79cR0fbTu9b6760SqCWA-AHx6lgb</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Context-Aware Running Route Recommender Learning from User Histories Using Artificial Neural Networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Knoch, S. ; Chapko, A. ; Emrich, A. ; Werth, D. ; Loos, P.</creator><creatorcontrib>Knoch, S. ; Chapko, A. ; Emrich, A. ; Werth, D. ; Loos, P.</creatorcontrib><description>So far, several websites exist where runners can request route information. Those systems are rather complex and lack a mobile-specific design. Thus, we propose a mobile running route recommender system (RRR) which supports the user while running or while planning the running route. The gathering and modeling of the route and its context/environment is discussed in respect of computational performance. A four dimensional plugin based ranking function is established that considers location-, time-, content-, and community-specific route features which cover all data types in our database. A conceptual model shows how the runner's physical condition could be involved by predicting the heart rate for certain routes. Therefore, Artificial Neural Networks are chosen as data mining methodology to extend the existing recommender system.</description><identifier>ISSN: 1529-4188</identifier><identifier>ISBN: 9781467326216</identifier><identifier>ISBN: 1467326216</identifier><identifier>EISSN: 2378-3915</identifier><identifier>DOI: 10.1109/DEXA.2012.49</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Collaboration ; context awareness ; Data mining ; Heart rate ; Mobile communication ; Mobile recommendations ; neural networks ; personalization ; Recommender systems</subject><ispartof>2012 23rd International Workshop on Database and Expert Systems Applications, 2012, p.106-110</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c218t-ab0db392321859a727bb961245ab72eff17ad12c4456cf3361053ed225cd4b693</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6327411$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6327411$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Knoch, S.</creatorcontrib><creatorcontrib>Chapko, A.</creatorcontrib><creatorcontrib>Emrich, A.</creatorcontrib><creatorcontrib>Werth, D.</creatorcontrib><creatorcontrib>Loos, P.</creatorcontrib><title>A Context-Aware Running Route Recommender Learning from User Histories Using Artificial Neural Networks</title><title>2012 23rd International Workshop on Database and Expert Systems Applications</title><addtitle>dexa</addtitle><description>So far, several websites exist where runners can request route information. Those systems are rather complex and lack a mobile-specific design. Thus, we propose a mobile running route recommender system (RRR) which supports the user while running or while planning the running route. The gathering and modeling of the route and its context/environment is discussed in respect of computational performance. A four dimensional plugin based ranking function is established that considers location-, time-, content-, and community-specific route features which cover all data types in our database. A conceptual model shows how the runner's physical condition could be involved by predicting the heart rate for certain routes. Therefore, Artificial Neural Networks are chosen as data mining methodology to extend the existing recommender system.</description><subject>Artificial neural networks</subject><subject>Collaboration</subject><subject>context awareness</subject><subject>Data mining</subject><subject>Heart rate</subject><subject>Mobile communication</subject><subject>Mobile recommendations</subject><subject>neural networks</subject><subject>personalization</subject><subject>Recommender systems</subject><issn>1529-4188</issn><issn>2378-3915</issn><isbn>9781467326216</isbn><isbn>1467326216</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjF1LwzAUhoMf4Jy7886b_oHOnJM0aS7L3JwwFIYD70bano7o2kqSMf331unVw_M-8DJ2C3wKwM39w_ytmCIHnEpzxkYodJ4KA9k5mxidg1RaoEJQF2wEGZpUQp5fsesQ3jkHY3IxYrsimfVdpK-YFkfrKVkfus51u2TdH-JgVPVtS11NPlmR9afU-L5NNmGYli7E3jsKg_6WwkfXuMrZffJMB39CPPb-I9ywy8buA03-OWabxfx1tkxXL49Ps2KVVgh5TG3J61IYFINlxmrUZWkUoMxsqZGaBrStASspM1U1QijgmaAaMatqWSojxuzu79cR0fbTu9b6760SqCWA-AHx6lgb</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Knoch, S.</creator><creator>Chapko, A.</creator><creator>Emrich, A.</creator><creator>Werth, D.</creator><creator>Loos, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>A Context-Aware Running Route Recommender Learning from User Histories Using Artificial Neural Networks</title><author>Knoch, S. ; Chapko, A. ; Emrich, A. ; Werth, D. ; Loos, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-ab0db392321859a727bb961245ab72eff17ad12c4456cf3361053ed225cd4b693</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Artificial neural networks</topic><topic>Collaboration</topic><topic>context awareness</topic><topic>Data mining</topic><topic>Heart rate</topic><topic>Mobile communication</topic><topic>Mobile recommendations</topic><topic>neural networks</topic><topic>personalization</topic><topic>Recommender systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Knoch, S.</creatorcontrib><creatorcontrib>Chapko, A.</creatorcontrib><creatorcontrib>Emrich, A.</creatorcontrib><creatorcontrib>Werth, D.</creatorcontrib><creatorcontrib>Loos, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Knoch, S.</au><au>Chapko, A.</au><au>Emrich, A.</au><au>Werth, D.</au><au>Loos, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Context-Aware Running Route Recommender Learning from User Histories Using Artificial Neural Networks</atitle><btitle>2012 23rd International Workshop on Database and Expert Systems Applications</btitle><stitle>dexa</stitle><date>2012-09</date><risdate>2012</risdate><spage>106</spage><epage>110</epage><pages>106-110</pages><issn>1529-4188</issn><eissn>2378-3915</eissn><isbn>9781467326216</isbn><isbn>1467326216</isbn><coden>IEEPAD</coden><abstract>So far, several websites exist where runners can request route information. Those systems are rather complex and lack a mobile-specific design. Thus, we propose a mobile running route recommender system (RRR) which supports the user while running or while planning the running route. The gathering and modeling of the route and its context/environment is discussed in respect of computational performance. A four dimensional plugin based ranking function is established that considers location-, time-, content-, and community-specific route features which cover all data types in our database. A conceptual model shows how the runner's physical condition could be involved by predicting the heart rate for certain routes. Therefore, Artificial Neural Networks are chosen as data mining methodology to extend the existing recommender system.</abstract><pub>IEEE</pub><doi>10.1109/DEXA.2012.49</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1529-4188
ispartof 2012 23rd International Workshop on Database and Expert Systems Applications, 2012, p.106-110
issn 1529-4188
2378-3915
language eng
recordid cdi_ieee_primary_6327411
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Collaboration
context awareness
Data mining
Heart rate
Mobile communication
Mobile recommendations
neural networks
personalization
Recommender systems
title A Context-Aware Running Route Recommender Learning from User Histories Using Artificial Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A12%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Context-Aware%20Running%20Route%20Recommender%20Learning%20from%20User%20Histories%20Using%20Artificial%20Neural%20Networks&rft.btitle=2012%2023rd%20International%20Workshop%20on%20Database%20and%20Expert%20Systems%20Applications&rft.au=Knoch,%20S.&rft.date=2012-09&rft.spage=106&rft.epage=110&rft.pages=106-110&rft.issn=1529-4188&rft.eissn=2378-3915&rft.isbn=9781467326216&rft.isbn_list=1467326216&rft.coden=IEEPAD&rft_id=info:doi/10.1109/DEXA.2012.49&rft_dat=%3Cieee_6IE%3E6327411%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6327411&rfr_iscdi=true