A novel voice signal discrimination algorithm and its application

A new algorithm which is capable of classifying voice signals recorded from subjects before and after the anesthetic procedure is presented. This new algorithm is based on Wavelet Packet Analysis (WPA) and Least Squares Support Vector Machines (LSSVM) and it combines the coefficients of WPA with oth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yu Wei, Han Qiang, Hosseini, H. G., Cameron, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 172
container_issue
container_start_page 169
container_title
container_volume 1
creator Yu Wei
Han Qiang
Hosseini, H. G.
Cameron, A.
description A new algorithm which is capable of classifying voice signals recorded from subjects before and after the anesthetic procedure is presented. This new algorithm is based on Wavelet Packet Analysis (WPA) and Least Squares Support Vector Machines (LSSVM) and it combines the coefficients of WPA with other parameters, such as Spectral Centroid, Spectral roll-off point etc., as the feature vector. Experimental evaluation has shown that the proposed classification algorithm based on WPA and LSSVM is very effective as compared to the other two methods, and the total accuracy rate is over 85%.
doi_str_mv 10.1109/MSNA.2012.6324540
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6324540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6324540</ieee_id><sourcerecordid>6324540</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-38e8386cf415757e94fe369919441134b54db1591cfef719cef9b9d527bf019c3</originalsourceid><addsrcrecordid>eNpVj01LxDAYhCMiKGt_gHjJH2jN23wfy-IXrHpw70uaJusr2bY0ZcF_b9G97FyGh4FhhpA7YBUAsw9vn-9NVTOoK8VrIQW7IIXVBoTSCyvNLs9YqmtS5PzNFhkwAsQNaRraD8eQ6HFAH2jGfe8S7TD7CQ_YuxmHnrq0Hyacvw7U9R3FOVM3jgn9X3pLrqJLORQnX5Ht0-N2_VJuPp5f182mRMvmkptguFE-CpBa6mBFDFxZC1YIAC5aKboWpAUfQ9RgfYi2tZ2sdRvZgnxF7v9rMYSwG5d1bvrZnX7zX3ziSwo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A novel voice signal discrimination algorithm and its application</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yu Wei ; Han Qiang ; Hosseini, H. G. ; Cameron, A.</creator><creatorcontrib>Yu Wei ; Han Qiang ; Hosseini, H. G. ; Cameron, A.</creatorcontrib><description>A new algorithm which is capable of classifying voice signals recorded from subjects before and after the anesthetic procedure is presented. This new algorithm is based on Wavelet Packet Analysis (WPA) and Least Squares Support Vector Machines (LSSVM) and it combines the coefficients of WPA with other parameters, such as Spectral Centroid, Spectral roll-off point etc., as the feature vector. Experimental evaluation has shown that the proposed classification algorithm based on WPA and LSSVM is very effective as compared to the other two methods, and the total accuracy rate is over 85%.</description><identifier>ISBN: 9781467324656</identifier><identifier>ISBN: 1467324655</identifier><identifier>EISBN: 9781467324670</identifier><identifier>EISBN: 1467324663</identifier><identifier>EISBN: 1467324671</identifier><identifier>EISBN: 9781467324663</identifier><identifier>DOI: 10.1109/MSNA.2012.6324540</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Classification algorithms ; Feature extraction ; Feature Selection ; Least Squares Support Vector Machines ; Speech ; Support vector machines ; Wavelet Packet Analysis ; Wavelet packets</subject><ispartof>2012 International Symposium on Instrumentation &amp; Measurement, Sensor Network and Automation (IMSNA), 2012, Vol.1, p.169-172</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6324540$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6324540$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu Wei</creatorcontrib><creatorcontrib>Han Qiang</creatorcontrib><creatorcontrib>Hosseini, H. G.</creatorcontrib><creatorcontrib>Cameron, A.</creatorcontrib><title>A novel voice signal discrimination algorithm and its application</title><title>2012 International Symposium on Instrumentation &amp; Measurement, Sensor Network and Automation (IMSNA)</title><addtitle>MSNA</addtitle><description>A new algorithm which is capable of classifying voice signals recorded from subjects before and after the anesthetic procedure is presented. This new algorithm is based on Wavelet Packet Analysis (WPA) and Least Squares Support Vector Machines (LSSVM) and it combines the coefficients of WPA with other parameters, such as Spectral Centroid, Spectral roll-off point etc., as the feature vector. Experimental evaluation has shown that the proposed classification algorithm based on WPA and LSSVM is very effective as compared to the other two methods, and the total accuracy rate is over 85%.</description><subject>Accuracy</subject><subject>Classification algorithms</subject><subject>Feature extraction</subject><subject>Feature Selection</subject><subject>Least Squares Support Vector Machines</subject><subject>Speech</subject><subject>Support vector machines</subject><subject>Wavelet Packet Analysis</subject><subject>Wavelet packets</subject><isbn>9781467324656</isbn><isbn>1467324655</isbn><isbn>9781467324670</isbn><isbn>1467324663</isbn><isbn>1467324671</isbn><isbn>9781467324663</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj01LxDAYhCMiKGt_gHjJH2jN23wfy-IXrHpw70uaJusr2bY0ZcF_b9G97FyGh4FhhpA7YBUAsw9vn-9NVTOoK8VrIQW7IIXVBoTSCyvNLs9YqmtS5PzNFhkwAsQNaRraD8eQ6HFAH2jGfe8S7TD7CQ_YuxmHnrq0Hyacvw7U9R3FOVM3jgn9X3pLrqJLORQnX5Ht0-N2_VJuPp5f182mRMvmkptguFE-CpBa6mBFDFxZC1YIAC5aKboWpAUfQ9RgfYi2tZ2sdRvZgnxF7v9rMYSwG5d1bvrZnX7zX3ziSwo</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Yu Wei</creator><creator>Han Qiang</creator><creator>Hosseini, H. G.</creator><creator>Cameron, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201208</creationdate><title>A novel voice signal discrimination algorithm and its application</title><author>Yu Wei ; Han Qiang ; Hosseini, H. G. ; Cameron, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-38e8386cf415757e94fe369919441134b54db1591cfef719cef9b9d527bf019c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Classification algorithms</topic><topic>Feature extraction</topic><topic>Feature Selection</topic><topic>Least Squares Support Vector Machines</topic><topic>Speech</topic><topic>Support vector machines</topic><topic>Wavelet Packet Analysis</topic><topic>Wavelet packets</topic><toplevel>online_resources</toplevel><creatorcontrib>Yu Wei</creatorcontrib><creatorcontrib>Han Qiang</creatorcontrib><creatorcontrib>Hosseini, H. G.</creatorcontrib><creatorcontrib>Cameron, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu Wei</au><au>Han Qiang</au><au>Hosseini, H. G.</au><au>Cameron, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A novel voice signal discrimination algorithm and its application</atitle><btitle>2012 International Symposium on Instrumentation &amp; Measurement, Sensor Network and Automation (IMSNA)</btitle><stitle>MSNA</stitle><date>2012-08</date><risdate>2012</risdate><volume>1</volume><spage>169</spage><epage>172</epage><pages>169-172</pages><isbn>9781467324656</isbn><isbn>1467324655</isbn><eisbn>9781467324670</eisbn><eisbn>1467324663</eisbn><eisbn>1467324671</eisbn><eisbn>9781467324663</eisbn><abstract>A new algorithm which is capable of classifying voice signals recorded from subjects before and after the anesthetic procedure is presented. This new algorithm is based on Wavelet Packet Analysis (WPA) and Least Squares Support Vector Machines (LSSVM) and it combines the coefficients of WPA with other parameters, such as Spectral Centroid, Spectral roll-off point etc., as the feature vector. Experimental evaluation has shown that the proposed classification algorithm based on WPA and LSSVM is very effective as compared to the other two methods, and the total accuracy rate is over 85%.</abstract><pub>IEEE</pub><doi>10.1109/MSNA.2012.6324540</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467324656
ispartof 2012 International Symposium on Instrumentation & Measurement, Sensor Network and Automation (IMSNA), 2012, Vol.1, p.169-172
issn
language eng
recordid cdi_ieee_primary_6324540
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Classification algorithms
Feature extraction
Feature Selection
Least Squares Support Vector Machines
Speech
Support vector machines
Wavelet Packet Analysis
Wavelet packets
title A novel voice signal discrimination algorithm and its application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A32%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20novel%20voice%20signal%20discrimination%20algorithm%20and%20its%20application&rft.btitle=2012%20International%20Symposium%20on%20Instrumentation%20&%20Measurement,%20Sensor%20Network%20and%20Automation%20(IMSNA)&rft.au=Yu%20Wei&rft.date=2012-08&rft.volume=1&rft.spage=169&rft.epage=172&rft.pages=169-172&rft.isbn=9781467324656&rft.isbn_list=1467324655&rft_id=info:doi/10.1109/MSNA.2012.6324540&rft_dat=%3Cieee_6IE%3E6324540%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467324670&rft.eisbn_list=1467324663&rft.eisbn_list=1467324671&rft.eisbn_list=9781467324663&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6324540&rfr_iscdi=true