A Novel Algorithm of Image Splicing Detection

Recent advances in computer technology have made digital image tampering more and more common. In this paper we present an approach to passive detection of image splicing. The image splicing detection problem can be regarded as a two-class classification problem under the pattern recognition framewo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhu Kaizhen, Zhen Zhang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1930
container_issue
container_start_page 1927
container_title
container_volume
creator Zhu Kaizhen
Zhen Zhang
description Recent advances in computer technology have made digital image tampering more and more common. In this paper we present an approach to passive detection of image splicing. The image splicing detection problem can be regarded as a two-class classification problem under the pattern recognition framework. The features are extracted by image quality metrics (IQMs) and moments of characteristic functions of wavelet subbands. To evaluate the performance of our proposed model, we further present a concrete implementation of this model. Our experimental works have demonstrated that this splicing detection scheme performs effectively and have indicated that the proposed approach possesses promising capability in splicing detection.
doi_str_mv 10.1109/ICICEE.2012.512
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6322803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6322803</ieee_id><sourcerecordid>6322803</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-37d92c12afa455773f03dd3f853ca522ccb1b614619464fc5d7b4f13f2070e623</originalsourceid><addsrcrecordid>eNotjj1LxEAUAFdEUM_UFjb7BxL3vbefZYhRA4cWan0km91zJbkcSRD89x7oNNMNw9gtiAJAuPumaqq6LlAAFgrwjGXOWGG0U9I4pHN2DVIbAqkEXLJsWb7ECQuWrLpieclfpu8w8HLYT3NaP0c-Rd6M7T7wt-OQfDrs-UNYg1_TdLhhF7EdlpD9e8M-Huv36jnfvj41VbnNExi15mR6hx6wja1UyhiKgvqeolXkW4XofQedPm2Bk1pGr3rTyQgUURgRNNKG3f11Uwhhd5zT2M4_O02IVhD9AoJ9QaU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Novel Algorithm of Image Splicing Detection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhu Kaizhen ; Zhen Zhang</creator><creatorcontrib>Zhu Kaizhen ; Zhen Zhang</creatorcontrib><description>Recent advances in computer technology have made digital image tampering more and more common. In this paper we present an approach to passive detection of image splicing. The image splicing detection problem can be regarded as a two-class classification problem under the pattern recognition framework. The features are extracted by image quality metrics (IQMs) and moments of characteristic functions of wavelet subbands. To evaluate the performance of our proposed model, we further present a concrete implementation of this model. Our experimental works have demonstrated that this splicing detection scheme performs effectively and have indicated that the proposed approach possesses promising capability in splicing detection.</description><identifier>ISBN: 1467314501</identifier><identifier>ISBN: 9781467314503</identifier><identifier>EISBN: 9780769547923</identifier><identifier>EISBN: 0769547923</identifier><identifier>DOI: 10.1109/ICICEE.2012.512</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arrays ; Digital image passive-blind forensics ; Feature extraction ; Histograms ; Image quality ; image quality metrics ; image splicing detection ; Measurement ; moment based features ; Splicing ; Support Vector Machine (SVM) ; Support vector machines</subject><ispartof>2012 International Conference on Industrial Control and Electronics Engineering, 2012, p.1927-1930</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6322803$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6322803$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu Kaizhen</creatorcontrib><creatorcontrib>Zhen Zhang</creatorcontrib><title>A Novel Algorithm of Image Splicing Detection</title><title>2012 International Conference on Industrial Control and Electronics Engineering</title><addtitle>icicee</addtitle><description>Recent advances in computer technology have made digital image tampering more and more common. In this paper we present an approach to passive detection of image splicing. The image splicing detection problem can be regarded as a two-class classification problem under the pattern recognition framework. The features are extracted by image quality metrics (IQMs) and moments of characteristic functions of wavelet subbands. To evaluate the performance of our proposed model, we further present a concrete implementation of this model. Our experimental works have demonstrated that this splicing detection scheme performs effectively and have indicated that the proposed approach possesses promising capability in splicing detection.</description><subject>Arrays</subject><subject>Digital image passive-blind forensics</subject><subject>Feature extraction</subject><subject>Histograms</subject><subject>Image quality</subject><subject>image quality metrics</subject><subject>image splicing detection</subject><subject>Measurement</subject><subject>moment based features</subject><subject>Splicing</subject><subject>Support Vector Machine (SVM)</subject><subject>Support vector machines</subject><isbn>1467314501</isbn><isbn>9781467314503</isbn><isbn>9780769547923</isbn><isbn>0769547923</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjj1LxEAUAFdEUM_UFjb7BxL3vbefZYhRA4cWan0km91zJbkcSRD89x7oNNMNw9gtiAJAuPumaqq6LlAAFgrwjGXOWGG0U9I4pHN2DVIbAqkEXLJsWb7ECQuWrLpieclfpu8w8HLYT3NaP0c-Rd6M7T7wt-OQfDrs-UNYg1_TdLhhF7EdlpD9e8M-Huv36jnfvj41VbnNExi15mR6hx6wja1UyhiKgvqeolXkW4XofQedPm2Bk1pGr3rTyQgUURgRNNKG3f11Uwhhd5zT2M4_O02IVhD9AoJ9QaU</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Zhu Kaizhen</creator><creator>Zhen Zhang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201208</creationdate><title>A Novel Algorithm of Image Splicing Detection</title><author>Zhu Kaizhen ; Zhen Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-37d92c12afa455773f03dd3f853ca522ccb1b614619464fc5d7b4f13f2070e623</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Arrays</topic><topic>Digital image passive-blind forensics</topic><topic>Feature extraction</topic><topic>Histograms</topic><topic>Image quality</topic><topic>image quality metrics</topic><topic>image splicing detection</topic><topic>Measurement</topic><topic>moment based features</topic><topic>Splicing</topic><topic>Support Vector Machine (SVM)</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu Kaizhen</creatorcontrib><creatorcontrib>Zhen Zhang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu Kaizhen</au><au>Zhen Zhang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Novel Algorithm of Image Splicing Detection</atitle><btitle>2012 International Conference on Industrial Control and Electronics Engineering</btitle><stitle>icicee</stitle><date>2012-08</date><risdate>2012</risdate><spage>1927</spage><epage>1930</epage><pages>1927-1930</pages><isbn>1467314501</isbn><isbn>9781467314503</isbn><eisbn>9780769547923</eisbn><eisbn>0769547923</eisbn><coden>IEEPAD</coden><abstract>Recent advances in computer technology have made digital image tampering more and more common. In this paper we present an approach to passive detection of image splicing. The image splicing detection problem can be regarded as a two-class classification problem under the pattern recognition framework. The features are extracted by image quality metrics (IQMs) and moments of characteristic functions of wavelet subbands. To evaluate the performance of our proposed model, we further present a concrete implementation of this model. Our experimental works have demonstrated that this splicing detection scheme performs effectively and have indicated that the proposed approach possesses promising capability in splicing detection.</abstract><pub>IEEE</pub><doi>10.1109/ICICEE.2012.512</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467314501
ispartof 2012 International Conference on Industrial Control and Electronics Engineering, 2012, p.1927-1930
issn
language eng
recordid cdi_ieee_primary_6322803
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Arrays
Digital image passive-blind forensics
Feature extraction
Histograms
Image quality
image quality metrics
image splicing detection
Measurement
moment based features
Splicing
Support Vector Machine (SVM)
Support vector machines
title A Novel Algorithm of Image Splicing Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A19%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Novel%20Algorithm%20of%20Image%20Splicing%20Detection&rft.btitle=2012%20International%20Conference%20on%20Industrial%20Control%20and%20Electronics%20Engineering&rft.au=Zhu%20Kaizhen&rft.date=2012-08&rft.spage=1927&rft.epage=1930&rft.pages=1927-1930&rft.isbn=1467314501&rft.isbn_list=9781467314503&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICICEE.2012.512&rft_dat=%3Cieee_6IE%3E6322803%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769547923&rft.eisbn_list=0769547923&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6322803&rfr_iscdi=true