Microcalcification detection using a fuzzy inference system and support vector machines

Breast cancer remains one of the deadliest diseases among women. Microcalcifications can be an early indicator of a breast cancer. Thus when they are present their detection during a screening test is very crucial. But due to their small size and low contrast in mammographies their detection is diff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kabbadj, Y., Regragui, F., Himmi, M. M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 315
container_issue
container_start_page 312
container_title
container_volume
creator Kabbadj, Y.
Regragui, F.
Himmi, M. M.
description Breast cancer remains one of the deadliest diseases among women. Microcalcifications can be an early indicator of a breast cancer. Thus when they are present their detection during a screening test is very crucial. But due to their small size and low contrast in mammographies their detection is difficult. Therefore many computer aided diagnosis mathods have been developped to help and assist rediologist during their screening tests. This paper presents a novel approach to detect microcalcifications on digitized mammaographies using fuzzy logic and support vector machines. Our method was tested on 16 mammograms from Mias database including both positive and negative cases. We have obtained very satisfactory results with a sensitivity of 99,60% and a specificity of 99,11% during the learning phase.
doi_str_mv 10.1109/ICMCS.2012.6320216
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6320216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6320216</ieee_id><sourcerecordid>6320216</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-dc8351b8bd2c6efb51c08202d813dbea383a91790629ffc78bfd666d405160933</originalsourceid><addsrcrecordid>eNo9UM1KxDAYjIigrvsCeskLbM2XtGlylOLPwi4eXPC4pMkXjWzT0rRC9-ktujiXmTnMMAwht8AyAKbv19W2ess4A55JwRkHeUauIZelgIIzef5vQOWXZJnSF5uhOAjNr8j7Nti-teZggw_WDKGN1OGA9leNKcQPaqgfj8eJhuixx2iRpikN2FATHU1j17X9QL_nSNvTxtjPEDHdkAtvDgmXJ16Q3dPjrnpZbV6f19XDZhU0G1bOKlFArWrHrURfF2DnZYw7BcLVaIQSRkOpmeTae1uq2jsppctZAZJpIRbk7q82IOK-60Nj-ml_-kH8AP3dUws</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Microcalcification detection using a fuzzy inference system and support vector machines</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kabbadj, Y. ; Regragui, F. ; Himmi, M. M.</creator><creatorcontrib>Kabbadj, Y. ; Regragui, F. ; Himmi, M. M.</creatorcontrib><description>Breast cancer remains one of the deadliest diseases among women. Microcalcifications can be an early indicator of a breast cancer. Thus when they are present their detection during a screening test is very crucial. But due to their small size and low contrast in mammographies their detection is difficult. Therefore many computer aided diagnosis mathods have been developped to help and assist rediologist during their screening tests. This paper presents a novel approach to detect microcalcifications on digitized mammaographies using fuzzy logic and support vector machines. Our method was tested on 16 mammograms from Mias database including both positive and negative cases. We have obtained very satisfactory results with a sensitivity of 99,60% and a specificity of 99,11% during the learning phase.</description><identifier>ISBN: 1467315184</identifier><identifier>ISBN: 9781467315180</identifier><identifier>EISBN: 1467315206</identifier><identifier>EISBN: 1467315192</identifier><identifier>EISBN: 9781467315197</identifier><identifier>EISBN: 9781467315203</identifier><identifier>DOI: 10.1109/ICMCS.2012.6320216</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical imaging ; Breast ; Breast cancer ; Computer Aided Detection Microcalcification Detection ; Diseases ; Educational institutions ; Fuzzy Inference Systems ; Image reconstruction ; Size measurement ; Support Vector Machines ; Surface treatment</subject><ispartof>2012 International Conference on Multimedia Computing and Systems, 2012, p.312-315</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6320216$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6320216$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kabbadj, Y.</creatorcontrib><creatorcontrib>Regragui, F.</creatorcontrib><creatorcontrib>Himmi, M. M.</creatorcontrib><title>Microcalcification detection using a fuzzy inference system and support vector machines</title><title>2012 International Conference on Multimedia Computing and Systems</title><addtitle>ICMCS</addtitle><description>Breast cancer remains one of the deadliest diseases among women. Microcalcifications can be an early indicator of a breast cancer. Thus when they are present their detection during a screening test is very crucial. But due to their small size and low contrast in mammographies their detection is difficult. Therefore many computer aided diagnosis mathods have been developped to help and assist rediologist during their screening tests. This paper presents a novel approach to detect microcalcifications on digitized mammaographies using fuzzy logic and support vector machines. Our method was tested on 16 mammograms from Mias database including both positive and negative cases. We have obtained very satisfactory results with a sensitivity of 99,60% and a specificity of 99,11% during the learning phase.</description><subject>Biomedical imaging</subject><subject>Breast</subject><subject>Breast cancer</subject><subject>Computer Aided Detection Microcalcification Detection</subject><subject>Diseases</subject><subject>Educational institutions</subject><subject>Fuzzy Inference Systems</subject><subject>Image reconstruction</subject><subject>Size measurement</subject><subject>Support Vector Machines</subject><subject>Surface treatment</subject><isbn>1467315184</isbn><isbn>9781467315180</isbn><isbn>1467315206</isbn><isbn>1467315192</isbn><isbn>9781467315197</isbn><isbn>9781467315203</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9UM1KxDAYjIigrvsCeskLbM2XtGlylOLPwi4eXPC4pMkXjWzT0rRC9-ktujiXmTnMMAwht8AyAKbv19W2ess4A55JwRkHeUauIZelgIIzef5vQOWXZJnSF5uhOAjNr8j7Nti-teZggw_WDKGN1OGA9leNKcQPaqgfj8eJhuixx2iRpikN2FATHU1j17X9QL_nSNvTxtjPEDHdkAtvDgmXJ16Q3dPjrnpZbV6f19XDZhU0G1bOKlFArWrHrURfF2DnZYw7BcLVaIQSRkOpmeTae1uq2jsppctZAZJpIRbk7q82IOK-60Nj-ml_-kH8AP3dUws</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Kabbadj, Y.</creator><creator>Regragui, F.</creator><creator>Himmi, M. M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201205</creationdate><title>Microcalcification detection using a fuzzy inference system and support vector machines</title><author>Kabbadj, Y. ; Regragui, F. ; Himmi, M. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-dc8351b8bd2c6efb51c08202d813dbea383a91790629ffc78bfd666d405160933</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biomedical imaging</topic><topic>Breast</topic><topic>Breast cancer</topic><topic>Computer Aided Detection Microcalcification Detection</topic><topic>Diseases</topic><topic>Educational institutions</topic><topic>Fuzzy Inference Systems</topic><topic>Image reconstruction</topic><topic>Size measurement</topic><topic>Support Vector Machines</topic><topic>Surface treatment</topic><toplevel>online_resources</toplevel><creatorcontrib>Kabbadj, Y.</creatorcontrib><creatorcontrib>Regragui, F.</creatorcontrib><creatorcontrib>Himmi, M. M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kabbadj, Y.</au><au>Regragui, F.</au><au>Himmi, M. M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Microcalcification detection using a fuzzy inference system and support vector machines</atitle><btitle>2012 International Conference on Multimedia Computing and Systems</btitle><stitle>ICMCS</stitle><date>2012-05</date><risdate>2012</risdate><spage>312</spage><epage>315</epage><pages>312-315</pages><isbn>1467315184</isbn><isbn>9781467315180</isbn><eisbn>1467315206</eisbn><eisbn>1467315192</eisbn><eisbn>9781467315197</eisbn><eisbn>9781467315203</eisbn><abstract>Breast cancer remains one of the deadliest diseases among women. Microcalcifications can be an early indicator of a breast cancer. Thus when they are present their detection during a screening test is very crucial. But due to their small size and low contrast in mammographies their detection is difficult. Therefore many computer aided diagnosis mathods have been developped to help and assist rediologist during their screening tests. This paper presents a novel approach to detect microcalcifications on digitized mammaographies using fuzzy logic and support vector machines. Our method was tested on 16 mammograms from Mias database including both positive and negative cases. We have obtained very satisfactory results with a sensitivity of 99,60% and a specificity of 99,11% during the learning phase.</abstract><pub>IEEE</pub><doi>10.1109/ICMCS.2012.6320216</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467315184
ispartof 2012 International Conference on Multimedia Computing and Systems, 2012, p.312-315
issn
language eng
recordid cdi_ieee_primary_6320216
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biomedical imaging
Breast
Breast cancer
Computer Aided Detection Microcalcification Detection
Diseases
Educational institutions
Fuzzy Inference Systems
Image reconstruction
Size measurement
Support Vector Machines
Surface treatment
title Microcalcification detection using a fuzzy inference system and support vector machines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T07%3A35%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Microcalcification%20detection%20using%20a%20fuzzy%20inference%20system%20and%20support%20vector%20machines&rft.btitle=2012%20International%20Conference%20on%20Multimedia%20Computing%20and%20Systems&rft.au=Kabbadj,%20Y.&rft.date=2012-05&rft.spage=312&rft.epage=315&rft.pages=312-315&rft.isbn=1467315184&rft.isbn_list=9781467315180&rft_id=info:doi/10.1109/ICMCS.2012.6320216&rft_dat=%3Cieee_6IE%3E6320216%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467315206&rft.eisbn_list=1467315192&rft.eisbn_list=9781467315197&rft.eisbn_list=9781467315203&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6320216&rfr_iscdi=true