Reducing the gap between linear biased classical and linear Bayesian estimation

In classical estimation usually unbiased estimators are used. This is mainly because the bias term in classical biased estimators in general depends on the parameter to be estimated. However, recently a considerable amount of research has been spent on improving unbiased estimators by introducing a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fu-Mueller, L., Lunglmayr, M., Huemer, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue
container_start_page 65
container_title
container_volume
creator Fu-Mueller, L.
Lunglmayr, M.
Huemer, M.
description In classical estimation usually unbiased estimators are used. This is mainly because the bias term in classical biased estimators in general depends on the parameter to be estimated. However, recently a considerable amount of research has been spent on improving unbiased estimators by introducing a bias, e.g. based on a minimax optimization strategy. In this work we follow this idea of introducing a bias, but we describe a different strategy for optimizing the estimators' performance. Although we stick to classical estimation, we show that the Bayesian linear minimum mean square error estimator can be brought into the same algebraic form as the resulting biased estimator improving the best linear unbiased estimator. This not only emphasizes the fact that this approach leads to betters estimators than the minimax approach on average over all parameters, but also can be seen as another way of reducing the gap between classical and Bayesian estimation.
doi_str_mv 10.1109/SSP.2012.6319787
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6319787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6319787</ieee_id><sourcerecordid>6319787</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a35ada0312dda0c29ca8bac0693f9d6e3c0d0e785363347e5430ee74faf9bd53</originalsourceid><addsrcrecordid>eNo1kEtLw0AUhccXWGv3gpv5A4l35mYyk6UWX1Co2O7LzcxNHYmxZCLSf2_AdvUtPjiHc4S4UZArBdXdavWWa1A6L1FV1tkTcaWK0iIop-ypmOiywgyNUWdiNvqj08X56NBiBg7wUsxS-gQAVTqNTk_E8p3Dj4_dVg4fLLe0kzUPv8ydbGPH1Ms6UuIgfUspRU-tpC4c3QPtOUXqJKchftEQv7trcdFQm3h24FSsnx7X85dssXx-nd8vsqisGTJCQ4EAlQ4jvK48uZo8jCOaKpSMHgKwdQZLxMKyKRCYbdFQU9XB4FTc_sdGZt7s-rG9328O1-AfANZTqw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reducing the gap between linear biased classical and linear Bayesian estimation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fu-Mueller, L. ; Lunglmayr, M. ; Huemer, M.</creator><creatorcontrib>Fu-Mueller, L. ; Lunglmayr, M. ; Huemer, M.</creatorcontrib><description>In classical estimation usually unbiased estimators are used. This is mainly because the bias term in classical biased estimators in general depends on the parameter to be estimated. However, recently a considerable amount of research has been spent on improving unbiased estimators by introducing a bias, e.g. based on a minimax optimization strategy. In this work we follow this idea of introducing a bias, but we describe a different strategy for optimizing the estimators' performance. Although we stick to classical estimation, we show that the Bayesian linear minimum mean square error estimator can be brought into the same algebraic form as the resulting biased estimator improving the best linear unbiased estimator. This not only emphasizes the fact that this approach leads to betters estimators than the minimax approach on average over all parameters, but also can be seen as another way of reducing the gap between classical and Bayesian estimation.</description><identifier>ISSN: 2373-0803</identifier><identifier>ISBN: 9781467301824</identifier><identifier>ISBN: 1467301825</identifier><identifier>EISSN: 2693-3551</identifier><identifier>EISBN: 1467301817</identifier><identifier>EISBN: 9781467301817</identifier><identifier>DOI: 10.1109/SSP.2012.6319787</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Covariance matrix ; Estimation ; Mean square error methods ; Optimization ; Signal processing ; Vectors</subject><ispartof>2012 IEEE Statistical Signal Processing Workshop (SSP), 2012, p.65-68</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6319787$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6319787$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fu-Mueller, L.</creatorcontrib><creatorcontrib>Lunglmayr, M.</creatorcontrib><creatorcontrib>Huemer, M.</creatorcontrib><title>Reducing the gap between linear biased classical and linear Bayesian estimation</title><title>2012 IEEE Statistical Signal Processing Workshop (SSP)</title><addtitle>SSP</addtitle><description>In classical estimation usually unbiased estimators are used. This is mainly because the bias term in classical biased estimators in general depends on the parameter to be estimated. However, recently a considerable amount of research has been spent on improving unbiased estimators by introducing a bias, e.g. based on a minimax optimization strategy. In this work we follow this idea of introducing a bias, but we describe a different strategy for optimizing the estimators' performance. Although we stick to classical estimation, we show that the Bayesian linear minimum mean square error estimator can be brought into the same algebraic form as the resulting biased estimator improving the best linear unbiased estimator. This not only emphasizes the fact that this approach leads to betters estimators than the minimax approach on average over all parameters, but also can be seen as another way of reducing the gap between classical and Bayesian estimation.</description><subject>Bayesian methods</subject><subject>Covariance matrix</subject><subject>Estimation</subject><subject>Mean square error methods</subject><subject>Optimization</subject><subject>Signal processing</subject><subject>Vectors</subject><issn>2373-0803</issn><issn>2693-3551</issn><isbn>9781467301824</isbn><isbn>1467301825</isbn><isbn>1467301817</isbn><isbn>9781467301817</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kEtLw0AUhccXWGv3gpv5A4l35mYyk6UWX1Co2O7LzcxNHYmxZCLSf2_AdvUtPjiHc4S4UZArBdXdavWWa1A6L1FV1tkTcaWK0iIop-ypmOiywgyNUWdiNvqj08X56NBiBg7wUsxS-gQAVTqNTk_E8p3Dj4_dVg4fLLe0kzUPv8ydbGPH1Ms6UuIgfUspRU-tpC4c3QPtOUXqJKchftEQv7trcdFQm3h24FSsnx7X85dssXx-nd8vsqisGTJCQ4EAlQ4jvK48uZo8jCOaKpSMHgKwdQZLxMKyKRCYbdFQU9XB4FTc_sdGZt7s-rG9328O1-AfANZTqw</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Fu-Mueller, L.</creator><creator>Lunglmayr, M.</creator><creator>Huemer, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201208</creationdate><title>Reducing the gap between linear biased classical and linear Bayesian estimation</title><author>Fu-Mueller, L. ; Lunglmayr, M. ; Huemer, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a35ada0312dda0c29ca8bac0693f9d6e3c0d0e785363347e5430ee74faf9bd53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bayesian methods</topic><topic>Covariance matrix</topic><topic>Estimation</topic><topic>Mean square error methods</topic><topic>Optimization</topic><topic>Signal processing</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Fu-Mueller, L.</creatorcontrib><creatorcontrib>Lunglmayr, M.</creatorcontrib><creatorcontrib>Huemer, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fu-Mueller, L.</au><au>Lunglmayr, M.</au><au>Huemer, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reducing the gap between linear biased classical and linear Bayesian estimation</atitle><btitle>2012 IEEE Statistical Signal Processing Workshop (SSP)</btitle><stitle>SSP</stitle><date>2012-08</date><risdate>2012</risdate><spage>65</spage><epage>68</epage><pages>65-68</pages><issn>2373-0803</issn><eissn>2693-3551</eissn><isbn>9781467301824</isbn><isbn>1467301825</isbn><eisbn>1467301817</eisbn><eisbn>9781467301817</eisbn><abstract>In classical estimation usually unbiased estimators are used. This is mainly because the bias term in classical biased estimators in general depends on the parameter to be estimated. However, recently a considerable amount of research has been spent on improving unbiased estimators by introducing a bias, e.g. based on a minimax optimization strategy. In this work we follow this idea of introducing a bias, but we describe a different strategy for optimizing the estimators' performance. Although we stick to classical estimation, we show that the Bayesian linear minimum mean square error estimator can be brought into the same algebraic form as the resulting biased estimator improving the best linear unbiased estimator. This not only emphasizes the fact that this approach leads to betters estimators than the minimax approach on average over all parameters, but also can be seen as another way of reducing the gap between classical and Bayesian estimation.</abstract><pub>IEEE</pub><doi>10.1109/SSP.2012.6319787</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2373-0803
ispartof 2012 IEEE Statistical Signal Processing Workshop (SSP), 2012, p.65-68
issn 2373-0803
2693-3551
language eng
recordid cdi_ieee_primary_6319787
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian methods
Covariance matrix
Estimation
Mean square error methods
Optimization
Signal processing
Vectors
title Reducing the gap between linear biased classical and linear Bayesian estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A14%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reducing%20the%20gap%20between%20linear%20biased%20classical%20and%20linear%20Bayesian%20estimation&rft.btitle=2012%20IEEE%20Statistical%20Signal%20Processing%20Workshop%20(SSP)&rft.au=Fu-Mueller,%20L.&rft.date=2012-08&rft.spage=65&rft.epage=68&rft.pages=65-68&rft.issn=2373-0803&rft.eissn=2693-3551&rft.isbn=9781467301824&rft.isbn_list=1467301825&rft_id=info:doi/10.1109/SSP.2012.6319787&rft_dat=%3Cieee_6IE%3E6319787%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467301817&rft.eisbn_list=9781467301817&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6319787&rfr_iscdi=true