Online search Orthogonal Matching Pursuit

The recovery of a sparse signal x from y= Φx, where Φ is a matrix with more columns than rows, is a task central to many signal processing problems. In this paper we present a new greedy algorithm to solve this type of problem. Our approach leverages ideas from the field of online search on state sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Weinstein, A. J., Wakin, M. B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 587
container_issue
container_start_page 584
container_title
container_volume
creator Weinstein, A. J.
Wakin, M. B.
description The recovery of a sparse signal x from y= Φx, where Φ is a matrix with more columns than rows, is a task central to many signal processing problems. In this paper we present a new greedy algorithm to solve this type of problem. Our approach leverages ideas from the field of online search on state spaces. We adopt the "agent perspective" and consider the set of possible supports of x as the state space. Under this setup, finding a solution is equivalent to finding a path from the empty support set to the state whose support has both the desired cardinality and the capacity to explain the observation vector y. An empirical investigation on Compressive Sensing problems shows that this new approach outperforms the classic greedy algorithm Orthogonal Matching Pursuit (OMP) while maintaining a reasonable computational complexity.
doi_str_mv 10.1109/SSP.2012.6319766
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6319766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6319766</ieee_id><sourcerecordid>6319766</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-338698f185e00e5e811f570998b002063e692b4c1f5a821704a06871c2b7910a3</originalsourceid><addsrcrecordid>eNo1j0tLw0AURscXWGv2gptsXUy8d25m5s5Sii-opFBdl0mYNCMxlUm68N9bsK4OfAc-OELcIBSI4O7X61WhAFVhCJ015kRcYWksATLaUzFTxpEkrfFMZM7yv1Pl-cGRJQkMdCmycfwEADSsiNVM3FVDH4eQj8GnpsurNHW77W7wff7mp6aLwzZf7dO4j9O1uGh9P4bsyLn4eHp8X7zIZfX8unhYyohWT5KIjeMWWQeAoAMjttqCc1wDKDAUjFN12RxWzwotlB4MW2xUbR2Cp7m4_fuNIYTNd4pfPv1sjtX0C3yKQ6I</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Online search Orthogonal Matching Pursuit</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Weinstein, A. J. ; Wakin, M. B.</creator><creatorcontrib>Weinstein, A. J. ; Wakin, M. B.</creatorcontrib><description>The recovery of a sparse signal x from y= Φx, where Φ is a matrix with more columns than rows, is a task central to many signal processing problems. In this paper we present a new greedy algorithm to solve this type of problem. Our approach leverages ideas from the field of online search on state spaces. We adopt the "agent perspective" and consider the set of possible supports of x as the state space. Under this setup, finding a solution is equivalent to finding a path from the empty support set to the state whose support has both the desired cardinality and the capacity to explain the observation vector y. An empirical investigation on Compressive Sensing problems shows that this new approach outperforms the classic greedy algorithm Orthogonal Matching Pursuit (OMP) while maintaining a reasonable computational complexity.</description><identifier>ISSN: 2373-0803</identifier><identifier>ISBN: 9781467301824</identifier><identifier>ISBN: 1467301825</identifier><identifier>EISSN: 2693-3551</identifier><identifier>EISBN: 1467301817</identifier><identifier>EISBN: 9781467301817</identifier><identifier>DOI: 10.1109/SSP.2012.6319766</identifier><language>eng</language><publisher>IEEE</publisher><subject>Compressed sensing ; Compressive Sensing ; Greedy algorithms ; Indexes ; Matching pursuit algorithms ; Orthogonal Matching Pursuit (OMP) ; Planning ; Search problems ; sparse approximation ; Vectors</subject><ispartof>2012 IEEE Statistical Signal Processing Workshop (SSP), 2012, p.584-587</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6319766$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6319766$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Weinstein, A. J.</creatorcontrib><creatorcontrib>Wakin, M. B.</creatorcontrib><title>Online search Orthogonal Matching Pursuit</title><title>2012 IEEE Statistical Signal Processing Workshop (SSP)</title><addtitle>SSP</addtitle><description>The recovery of a sparse signal x from y= Φx, where Φ is a matrix with more columns than rows, is a task central to many signal processing problems. In this paper we present a new greedy algorithm to solve this type of problem. Our approach leverages ideas from the field of online search on state spaces. We adopt the "agent perspective" and consider the set of possible supports of x as the state space. Under this setup, finding a solution is equivalent to finding a path from the empty support set to the state whose support has both the desired cardinality and the capacity to explain the observation vector y. An empirical investigation on Compressive Sensing problems shows that this new approach outperforms the classic greedy algorithm Orthogonal Matching Pursuit (OMP) while maintaining a reasonable computational complexity.</description><subject>Compressed sensing</subject><subject>Compressive Sensing</subject><subject>Greedy algorithms</subject><subject>Indexes</subject><subject>Matching pursuit algorithms</subject><subject>Orthogonal Matching Pursuit (OMP)</subject><subject>Planning</subject><subject>Search problems</subject><subject>sparse approximation</subject><subject>Vectors</subject><issn>2373-0803</issn><issn>2693-3551</issn><isbn>9781467301824</isbn><isbn>1467301825</isbn><isbn>1467301817</isbn><isbn>9781467301817</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j0tLw0AURscXWGv2gptsXUy8d25m5s5Sii-opFBdl0mYNCMxlUm68N9bsK4OfAc-OELcIBSI4O7X61WhAFVhCJ015kRcYWksATLaUzFTxpEkrfFMZM7yv1Pl-cGRJQkMdCmycfwEADSsiNVM3FVDH4eQj8GnpsurNHW77W7wff7mp6aLwzZf7dO4j9O1uGh9P4bsyLn4eHp8X7zIZfX8unhYyohWT5KIjeMWWQeAoAMjttqCc1wDKDAUjFN12RxWzwotlB4MW2xUbR2Cp7m4_fuNIYTNd4pfPv1sjtX0C3yKQ6I</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Weinstein, A. J.</creator><creator>Wakin, M. B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201208</creationdate><title>Online search Orthogonal Matching Pursuit</title><author>Weinstein, A. J. ; Wakin, M. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-338698f185e00e5e811f570998b002063e692b4c1f5a821704a06871c2b7910a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Compressed sensing</topic><topic>Compressive Sensing</topic><topic>Greedy algorithms</topic><topic>Indexes</topic><topic>Matching pursuit algorithms</topic><topic>Orthogonal Matching Pursuit (OMP)</topic><topic>Planning</topic><topic>Search problems</topic><topic>sparse approximation</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Weinstein, A. J.</creatorcontrib><creatorcontrib>Wakin, M. B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Weinstein, A. J.</au><au>Wakin, M. B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Online search Orthogonal Matching Pursuit</atitle><btitle>2012 IEEE Statistical Signal Processing Workshop (SSP)</btitle><stitle>SSP</stitle><date>2012-08</date><risdate>2012</risdate><spage>584</spage><epage>587</epage><pages>584-587</pages><issn>2373-0803</issn><eissn>2693-3551</eissn><isbn>9781467301824</isbn><isbn>1467301825</isbn><eisbn>1467301817</eisbn><eisbn>9781467301817</eisbn><abstract>The recovery of a sparse signal x from y= Φx, where Φ is a matrix with more columns than rows, is a task central to many signal processing problems. In this paper we present a new greedy algorithm to solve this type of problem. Our approach leverages ideas from the field of online search on state spaces. We adopt the "agent perspective" and consider the set of possible supports of x as the state space. Under this setup, finding a solution is equivalent to finding a path from the empty support set to the state whose support has both the desired cardinality and the capacity to explain the observation vector y. An empirical investigation on Compressive Sensing problems shows that this new approach outperforms the classic greedy algorithm Orthogonal Matching Pursuit (OMP) while maintaining a reasonable computational complexity.</abstract><pub>IEEE</pub><doi>10.1109/SSP.2012.6319766</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2373-0803
ispartof 2012 IEEE Statistical Signal Processing Workshop (SSP), 2012, p.584-587
issn 2373-0803
2693-3551
language eng
recordid cdi_ieee_primary_6319766
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Compressed sensing
Compressive Sensing
Greedy algorithms
Indexes
Matching pursuit algorithms
Orthogonal Matching Pursuit (OMP)
Planning
Search problems
sparse approximation
Vectors
title Online search Orthogonal Matching Pursuit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A08%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Online%20search%20Orthogonal%20Matching%20Pursuit&rft.btitle=2012%20IEEE%20Statistical%20Signal%20Processing%20Workshop%20(SSP)&rft.au=Weinstein,%20A.%20J.&rft.date=2012-08&rft.spage=584&rft.epage=587&rft.pages=584-587&rft.issn=2373-0803&rft.eissn=2693-3551&rft.isbn=9781467301824&rft.isbn_list=1467301825&rft_id=info:doi/10.1109/SSP.2012.6319766&rft_dat=%3Cieee_6IE%3E6319766%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467301817&rft.eisbn_list=9781467301817&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6319766&rfr_iscdi=true