GPU Acceleration of Pyrosequencing Noise Removal

Amplicon Noise [1], an updated version of Py-ronoise [2], is a tool for removing noise from metagenomic data recorded by a 454 pyrosequencer. Amplicon Noise has shown to be effective in reducing overestimation of operational taxonomic units (OTUs) and chimera detection. Amplicon-Noise's noise r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yang Gao, Bakos, J. D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 101
container_issue
container_start_page 94
container_title
container_volume
creator Yang Gao
Bakos, J. D.
description Amplicon Noise [1], an updated version of Py-ronoise [2], is a tool for removing noise from metagenomic data recorded by a 454 pyrosequencer. Amplicon Noise has shown to be effective in reducing overestimation of operational taxonomic units (OTUs) and chimera detection. Amplicon-Noise's noise removal method relies on clustering a large set of short sequences read by the sequencer. The DNA sequencing algorithm requires the computation of O(n 2 ) pair wise distances using a global sequence alignment method. Each sequence consists of a few hundred base pairs and a typical dataset contains 104 sequences, making the clustering computation extremely expensive. In this paper we describe of GPU kernel implementation of the most computationally expensive module in the Amplicon Noise software package, SeqDist. With our GPU workstation (Intel Core i7 980 @ 3.33GHz + 3 x NVIDIATesla C2070) and a typical 454 dataset, our implementation achieves a 8.6X (CUDA-SeqDist) speedup with a single GPU when compared with a 12 MPI ranks of the original tools running on the CPU alone. With three GPUs, we achieve a2.1X further speedup over the single GPU version, yielding a total speedup of 18.3X. We measure the throughput of our kernel to be 1.4 giga floating-point cell updates per second(GFCUPS) with a single GPU and 2.9 GFCUPS with 3 GPUs, where GFCUPS refers to the unique method by which the score matrix must be updated in the specialized alignment algorithm used in Amplicon Noise.
doi_str_mv 10.1109/SAAHPC.2012.15
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6319195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6319195</ieee_id><sourcerecordid>6319195</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-24cd50cf96c9393a8a8989e46f5feebdd46e8d63dfa92efd04ebe711cc11ab073</originalsourceid><addsrcrecordid>eNo9jMtKw0AUQMcX2NZu3bjJDyTOnfcsQ9C2UDSoBXdlMnNHRtJEkyr07xWUns1ZHDiEXAMtAKi9fS7LZV0VjAIrQJ6QKdXKSmG4kadkwkCpXIJ8PSNTEEpzZgyj58fA-SWZj-M7_cWABmYmhC7qTVZ6jy0Obp_6LutjVh-GfsTPL-x86t6yhz6NmD3hrv927RW5iK4dcf7vGdnc371Uy3z9uFhV5TpPoOU-Z8IHSX20yltuuTPOWGNRqCgjYhOCUGiC4iE6yzAGKrBBDeA9gGuo5jNy8_dNiLj9GNLODYet4mDBSv4DXtZH-Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>GPU Acceleration of Pyrosequencing Noise Removal</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yang Gao ; Bakos, J. D.</creator><creatorcontrib>Yang Gao ; Bakos, J. D.</creatorcontrib><description>Amplicon Noise [1], an updated version of Py-ronoise [2], is a tool for removing noise from metagenomic data recorded by a 454 pyrosequencer. Amplicon Noise has shown to be effective in reducing overestimation of operational taxonomic units (OTUs) and chimera detection. Amplicon-Noise's noise removal method relies on clustering a large set of short sequences read by the sequencer. The DNA sequencing algorithm requires the computation of O(n 2 ) pair wise distances using a global sequence alignment method. Each sequence consists of a few hundred base pairs and a typical dataset contains 104 sequences, making the clustering computation extremely expensive. In this paper we describe of GPU kernel implementation of the most computationally expensive module in the Amplicon Noise software package, SeqDist. With our GPU workstation (Intel Core i7 980 @ 3.33GHz + 3 x NVIDIATesla C2070) and a typical 454 dataset, our implementation achieves a 8.6X (CUDA-SeqDist) speedup with a single GPU when compared with a 12 MPI ranks of the original tools running on the CPU alone. With three GPUs, we achieve a2.1X further speedup over the single GPU version, yielding a total speedup of 18.3X. We measure the throughput of our kernel to be 1.4 giga floating-point cell updates per second(GFCUPS) with a single GPU and 2.9 GFCUPS with 3 GPUs, where GFCUPS refers to the unique method by which the score matrix must be updated in the specialized alignment algorithm used in Amplicon Noise.</description><identifier>ISSN: 2166-5133</identifier><identifier>ISBN: 1467328820</identifier><identifier>ISBN: 9781467328821</identifier><identifier>EISSN: 2166-515X</identifier><identifier>EISBN: 0769548385</identifier><identifier>EISBN: 9780769548388</identifier><identifier>DOI: 10.1109/SAAHPC.2012.15</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Amplicon Noise ; CUDA ; GPU ; GPU Computing ; Graphics processing unit ; Heterogeneous Computing ; Instruction sets ; Kernel ; Memory management ; Metagenomics ; MPI ; Needleman-Wunsch ; Optimization ; Pyronoise ; Registers ; Sequence Alignment ; Short Reads ; Smith-Waterman ; Throughput</subject><ispartof>2012 Symposium on Application Accelerators in High Performance Computing, 2012, p.94-101</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6319195$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6319195$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang Gao</creatorcontrib><creatorcontrib>Bakos, J. D.</creatorcontrib><title>GPU Acceleration of Pyrosequencing Noise Removal</title><title>2012 Symposium on Application Accelerators in High Performance Computing</title><addtitle>saahpc</addtitle><description>Amplicon Noise [1], an updated version of Py-ronoise [2], is a tool for removing noise from metagenomic data recorded by a 454 pyrosequencer. Amplicon Noise has shown to be effective in reducing overestimation of operational taxonomic units (OTUs) and chimera detection. Amplicon-Noise's noise removal method relies on clustering a large set of short sequences read by the sequencer. The DNA sequencing algorithm requires the computation of O(n 2 ) pair wise distances using a global sequence alignment method. Each sequence consists of a few hundred base pairs and a typical dataset contains 104 sequences, making the clustering computation extremely expensive. In this paper we describe of GPU kernel implementation of the most computationally expensive module in the Amplicon Noise software package, SeqDist. With our GPU workstation (Intel Core i7 980 @ 3.33GHz + 3 x NVIDIATesla C2070) and a typical 454 dataset, our implementation achieves a 8.6X (CUDA-SeqDist) speedup with a single GPU when compared with a 12 MPI ranks of the original tools running on the CPU alone. With three GPUs, we achieve a2.1X further speedup over the single GPU version, yielding a total speedup of 18.3X. We measure the throughput of our kernel to be 1.4 giga floating-point cell updates per second(GFCUPS) with a single GPU and 2.9 GFCUPS with 3 GPUs, where GFCUPS refers to the unique method by which the score matrix must be updated in the specialized alignment algorithm used in Amplicon Noise.</description><subject>Amplicon Noise</subject><subject>CUDA</subject><subject>GPU</subject><subject>GPU Computing</subject><subject>Graphics processing unit</subject><subject>Heterogeneous Computing</subject><subject>Instruction sets</subject><subject>Kernel</subject><subject>Memory management</subject><subject>Metagenomics</subject><subject>MPI</subject><subject>Needleman-Wunsch</subject><subject>Optimization</subject><subject>Pyronoise</subject><subject>Registers</subject><subject>Sequence Alignment</subject><subject>Short Reads</subject><subject>Smith-Waterman</subject><subject>Throughput</subject><issn>2166-5133</issn><issn>2166-515X</issn><isbn>1467328820</isbn><isbn>9781467328821</isbn><isbn>0769548385</isbn><isbn>9780769548388</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9jMtKw0AUQMcX2NZu3bjJDyTOnfcsQ9C2UDSoBXdlMnNHRtJEkyr07xWUns1ZHDiEXAMtAKi9fS7LZV0VjAIrQJ6QKdXKSmG4kadkwkCpXIJ8PSNTEEpzZgyj58fA-SWZj-M7_cWABmYmhC7qTVZ6jy0Obp_6LutjVh-GfsTPL-x86t6yhz6NmD3hrv927RW5iK4dcf7vGdnc371Uy3z9uFhV5TpPoOU-Z8IHSX20yltuuTPOWGNRqCgjYhOCUGiC4iE6yzAGKrBBDeA9gGuo5jNy8_dNiLj9GNLODYet4mDBSv4DXtZH-Q</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Yang Gao</creator><creator>Bakos, J. D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201207</creationdate><title>GPU Acceleration of Pyrosequencing Noise Removal</title><author>Yang Gao ; Bakos, J. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-24cd50cf96c9393a8a8989e46f5feebdd46e8d63dfa92efd04ebe711cc11ab073</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amplicon Noise</topic><topic>CUDA</topic><topic>GPU</topic><topic>GPU Computing</topic><topic>Graphics processing unit</topic><topic>Heterogeneous Computing</topic><topic>Instruction sets</topic><topic>Kernel</topic><topic>Memory management</topic><topic>Metagenomics</topic><topic>MPI</topic><topic>Needleman-Wunsch</topic><topic>Optimization</topic><topic>Pyronoise</topic><topic>Registers</topic><topic>Sequence Alignment</topic><topic>Short Reads</topic><topic>Smith-Waterman</topic><topic>Throughput</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang Gao</creatorcontrib><creatorcontrib>Bakos, J. D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang Gao</au><au>Bakos, J. D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>GPU Acceleration of Pyrosequencing Noise Removal</atitle><btitle>2012 Symposium on Application Accelerators in High Performance Computing</btitle><stitle>saahpc</stitle><date>2012-07</date><risdate>2012</risdate><spage>94</spage><epage>101</epage><pages>94-101</pages><issn>2166-5133</issn><eissn>2166-515X</eissn><isbn>1467328820</isbn><isbn>9781467328821</isbn><eisbn>0769548385</eisbn><eisbn>9780769548388</eisbn><coden>IEEPAD</coden><abstract>Amplicon Noise [1], an updated version of Py-ronoise [2], is a tool for removing noise from metagenomic data recorded by a 454 pyrosequencer. Amplicon Noise has shown to be effective in reducing overestimation of operational taxonomic units (OTUs) and chimera detection. Amplicon-Noise's noise removal method relies on clustering a large set of short sequences read by the sequencer. The DNA sequencing algorithm requires the computation of O(n 2 ) pair wise distances using a global sequence alignment method. Each sequence consists of a few hundred base pairs and a typical dataset contains 104 sequences, making the clustering computation extremely expensive. In this paper we describe of GPU kernel implementation of the most computationally expensive module in the Amplicon Noise software package, SeqDist. With our GPU workstation (Intel Core i7 980 @ 3.33GHz + 3 x NVIDIATesla C2070) and a typical 454 dataset, our implementation achieves a 8.6X (CUDA-SeqDist) speedup with a single GPU when compared with a 12 MPI ranks of the original tools running on the CPU alone. With three GPUs, we achieve a2.1X further speedup over the single GPU version, yielding a total speedup of 18.3X. We measure the throughput of our kernel to be 1.4 giga floating-point cell updates per second(GFCUPS) with a single GPU and 2.9 GFCUPS with 3 GPUs, where GFCUPS refers to the unique method by which the score matrix must be updated in the specialized alignment algorithm used in Amplicon Noise.</abstract><pub>IEEE</pub><doi>10.1109/SAAHPC.2012.15</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2166-5133
ispartof 2012 Symposium on Application Accelerators in High Performance Computing, 2012, p.94-101
issn 2166-5133
2166-515X
language eng
recordid cdi_ieee_primary_6319195
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Amplicon Noise
CUDA
GPU
GPU Computing
Graphics processing unit
Heterogeneous Computing
Instruction sets
Kernel
Memory management
Metagenomics
MPI
Needleman-Wunsch
Optimization
Pyronoise
Registers
Sequence Alignment
Short Reads
Smith-Waterman
Throughput
title GPU Acceleration of Pyrosequencing Noise Removal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A53%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=GPU%20Acceleration%20of%20Pyrosequencing%20Noise%20Removal&rft.btitle=2012%20Symposium%20on%20Application%20Accelerators%20in%20High%20Performance%20Computing&rft.au=Yang%20Gao&rft.date=2012-07&rft.spage=94&rft.epage=101&rft.pages=94-101&rft.issn=2166-5133&rft.eissn=2166-515X&rft.isbn=1467328820&rft.isbn_list=9781467328821&rft.coden=IEEPAD&rft_id=info:doi/10.1109/SAAHPC.2012.15&rft_dat=%3Cieee_6IE%3E6319195%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769548385&rft.eisbn_list=9780769548388&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6319195&rfr_iscdi=true