DC power flow optimization with a parallel evolutionary algorithm
A full power flow model has been used to analyze, operate, and plan power systems in the steady state. This model enables the active and reactive power flow to be analyzed and planned. With a DC power flow model, an approximated solution can be reached which minimizes the power flow in transmission...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | de Oliveira Gomes, Andre Meirelles Gouvea, Maury |
description | A full power flow model has been used to analyze, operate, and plan power systems in the steady state. This model enables the active and reactive power flow to be analyzed and planned. With a DC power flow model, an approximated solution can be reached which minimizes the power flow in transmission lines. A method that has been used in recent years for optimization problems is the evolutionary algorithm. It has the disadvantage of great computational effort being needed when it is used to optimize large and complex systems. This paper presents a method which uses parallel computing in order to implement an evolutionary algorithm with multi-populations. In this approach, each computer can receive a population, which uses a different parameter control strategy. Thus, problems inherent in the evolutionary algorithm, such as premature convergence can be reduced, and, thus, its performance enhanced. The proposed method was validated in an active power flow exchange problem in power systems. The efficiency of the method was tested and analyzed in experiments using the IEEE 14-bus system. |
doi_str_mv | 10.1109/TDC-LA.2012.6319125 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6319125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6319125</ieee_id><sourcerecordid>6319125</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-f906d9b3e3c151d9eedc1f946aab192b13785447a9dea530b41c828fd185e9443</originalsourceid><addsrcrecordid>eNo1T81OhDAYrDEm6soT7KUvAPbrD22PhPUvIfHCfVPgQ2uKJYASfXoxrnOZTGYymSFkDywDYPa2PpRpVWScAc9yARa4OiPXIHMteK6Bn5PEavOvubkkyTy_sQ2GK670FSkOJR3jihPtQ1xpHBc_-G-3-PhOV7-8UkdHN7kQMFD8jOHj13HTF3XhJU5bYLghF70LMyYn3pH6_q4uH9Pq-eGpLKrUW7akvWV5ZxuBogUFnUXsWuitzJ1rwPIGhDZKSu1sh04J1khoDTd9B0ahlVLsyP6v1iPicZz8sK04nk6LH55SS4E</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>DC power flow optimization with a parallel evolutionary algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>de Oliveira Gomes, Andre ; Meirelles Gouvea, Maury</creator><creatorcontrib>de Oliveira Gomes, Andre ; Meirelles Gouvea, Maury</creatorcontrib><description>A full power flow model has been used to analyze, operate, and plan power systems in the steady state. This model enables the active and reactive power flow to be analyzed and planned. With a DC power flow model, an approximated solution can be reached which minimizes the power flow in transmission lines. A method that has been used in recent years for optimization problems is the evolutionary algorithm. It has the disadvantage of great computational effort being needed when it is used to optimize large and complex systems. This paper presents a method which uses parallel computing in order to implement an evolutionary algorithm with multi-populations. In this approach, each computer can receive a population, which uses a different parameter control strategy. Thus, problems inherent in the evolutionary algorithm, such as premature convergence can be reduced, and, thus, its performance enhanced. The proposed method was validated in an active power flow exchange problem in power systems. The efficiency of the method was tested and analyzed in experiments using the IEEE 14-bus system.</description><identifier>ISBN: 9781467326728</identifier><identifier>ISBN: 1467326720</identifier><identifier>EISBN: 1467326712</identifier><identifier>EISBN: 9781467326735</identifier><identifier>EISBN: 9781467326711</identifier><identifier>EISBN: 1467326739</identifier><identifier>DOI: 10.1109/TDC-LA.2012.6319125</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computers ; DC power flow ; Evolutionary algorithm ; Evolutionary computation ; Parallel computing ; Parallel processing ; power flow ; Power system analysis ; Servers ; Service oriented architecture ; SOA ; Sociology ; Statistics</subject><ispartof>2012 Sixth IEEE/PES Transmission and Distribution: Latin America Conference and Exposition (T&D-LA), 2012, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6319125$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6319125$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>de Oliveira Gomes, Andre</creatorcontrib><creatorcontrib>Meirelles Gouvea, Maury</creatorcontrib><title>DC power flow optimization with a parallel evolutionary algorithm</title><title>2012 Sixth IEEE/PES Transmission and Distribution: Latin America Conference and Exposition (T&D-LA)</title><addtitle>TDC-LA</addtitle><description>A full power flow model has been used to analyze, operate, and plan power systems in the steady state. This model enables the active and reactive power flow to be analyzed and planned. With a DC power flow model, an approximated solution can be reached which minimizes the power flow in transmission lines. A method that has been used in recent years for optimization problems is the evolutionary algorithm. It has the disadvantage of great computational effort being needed when it is used to optimize large and complex systems. This paper presents a method which uses parallel computing in order to implement an evolutionary algorithm with multi-populations. In this approach, each computer can receive a population, which uses a different parameter control strategy. Thus, problems inherent in the evolutionary algorithm, such as premature convergence can be reduced, and, thus, its performance enhanced. The proposed method was validated in an active power flow exchange problem in power systems. The efficiency of the method was tested and analyzed in experiments using the IEEE 14-bus system.</description><subject>Computers</subject><subject>DC power flow</subject><subject>Evolutionary algorithm</subject><subject>Evolutionary computation</subject><subject>Parallel computing</subject><subject>Parallel processing</subject><subject>power flow</subject><subject>Power system analysis</subject><subject>Servers</subject><subject>Service oriented architecture</subject><subject>SOA</subject><subject>Sociology</subject><subject>Statistics</subject><isbn>9781467326728</isbn><isbn>1467326720</isbn><isbn>1467326712</isbn><isbn>9781467326735</isbn><isbn>9781467326711</isbn><isbn>1467326739</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1T81OhDAYrDEm6soT7KUvAPbrD22PhPUvIfHCfVPgQ2uKJYASfXoxrnOZTGYymSFkDywDYPa2PpRpVWScAc9yARa4OiPXIHMteK6Bn5PEavOvubkkyTy_sQ2GK670FSkOJR3jihPtQ1xpHBc_-G-3-PhOV7-8UkdHN7kQMFD8jOHj13HTF3XhJU5bYLghF70LMyYn3pH6_q4uH9Pq-eGpLKrUW7akvWV5ZxuBogUFnUXsWuitzJ1rwPIGhDZKSu1sh04J1khoDTd9B0ahlVLsyP6v1iPicZz8sK04nk6LH55SS4E</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>de Oliveira Gomes, Andre</creator><creator>Meirelles Gouvea, Maury</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>DC power flow optimization with a parallel evolutionary algorithm</title><author>de Oliveira Gomes, Andre ; Meirelles Gouvea, Maury</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-f906d9b3e3c151d9eedc1f946aab192b13785447a9dea530b41c828fd185e9443</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computers</topic><topic>DC power flow</topic><topic>Evolutionary algorithm</topic><topic>Evolutionary computation</topic><topic>Parallel computing</topic><topic>Parallel processing</topic><topic>power flow</topic><topic>Power system analysis</topic><topic>Servers</topic><topic>Service oriented architecture</topic><topic>SOA</topic><topic>Sociology</topic><topic>Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>de Oliveira Gomes, Andre</creatorcontrib><creatorcontrib>Meirelles Gouvea, Maury</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>de Oliveira Gomes, Andre</au><au>Meirelles Gouvea, Maury</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>DC power flow optimization with a parallel evolutionary algorithm</atitle><btitle>2012 Sixth IEEE/PES Transmission and Distribution: Latin America Conference and Exposition (T&D-LA)</btitle><stitle>TDC-LA</stitle><date>2012-09</date><risdate>2012</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>9781467326728</isbn><isbn>1467326720</isbn><eisbn>1467326712</eisbn><eisbn>9781467326735</eisbn><eisbn>9781467326711</eisbn><eisbn>1467326739</eisbn><abstract>A full power flow model has been used to analyze, operate, and plan power systems in the steady state. This model enables the active and reactive power flow to be analyzed and planned. With a DC power flow model, an approximated solution can be reached which minimizes the power flow in transmission lines. A method that has been used in recent years for optimization problems is the evolutionary algorithm. It has the disadvantage of great computational effort being needed when it is used to optimize large and complex systems. This paper presents a method which uses parallel computing in order to implement an evolutionary algorithm with multi-populations. In this approach, each computer can receive a population, which uses a different parameter control strategy. Thus, problems inherent in the evolutionary algorithm, such as premature convergence can be reduced, and, thus, its performance enhanced. The proposed method was validated in an active power flow exchange problem in power systems. The efficiency of the method was tested and analyzed in experiments using the IEEE 14-bus system.</abstract><pub>IEEE</pub><doi>10.1109/TDC-LA.2012.6319125</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467326728 |
ispartof | 2012 Sixth IEEE/PES Transmission and Distribution: Latin America Conference and Exposition (T&D-LA), 2012, p.1-6 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6319125 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computers DC power flow Evolutionary algorithm Evolutionary computation Parallel computing Parallel processing power flow Power system analysis Servers Service oriented architecture SOA Sociology Statistics |
title | DC power flow optimization with a parallel evolutionary algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A56%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=DC%20power%20flow%20optimization%20with%20a%20parallel%20evolutionary%20algorithm&rft.btitle=2012%20Sixth%20IEEE/PES%20Transmission%20and%20Distribution:%20Latin%20America%20Conference%20and%20Exposition%20(T&D-LA)&rft.au=de%20Oliveira%20Gomes,%20Andre&rft.date=2012-09&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=9781467326728&rft.isbn_list=1467326720&rft_id=info:doi/10.1109/TDC-LA.2012.6319125&rft_dat=%3Cieee_6IE%3E6319125%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467326712&rft.eisbn_list=9781467326735&rft.eisbn_list=9781467326711&rft.eisbn_list=1467326739&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6319125&rfr_iscdi=true |