DC power flow optimization with a parallel evolutionary algorithm

A full power flow model has been used to analyze, operate, and plan power systems in the steady state. This model enables the active and reactive power flow to be analyzed and planned. With a DC power flow model, an approximated solution can be reached which minimizes the power flow in transmission...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: de Oliveira Gomes, Andre, Meirelles Gouvea, Maury
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator de Oliveira Gomes, Andre
Meirelles Gouvea, Maury
description A full power flow model has been used to analyze, operate, and plan power systems in the steady state. This model enables the active and reactive power flow to be analyzed and planned. With a DC power flow model, an approximated solution can be reached which minimizes the power flow in transmission lines. A method that has been used in recent years for optimization problems is the evolutionary algorithm. It has the disadvantage of great computational effort being needed when it is used to optimize large and complex systems. This paper presents a method which uses parallel computing in order to implement an evolutionary algorithm with multi-populations. In this approach, each computer can receive a population, which uses a different parameter control strategy. Thus, problems inherent in the evolutionary algorithm, such as premature convergence can be reduced, and, thus, its performance enhanced. The proposed method was validated in an active power flow exchange problem in power systems. The efficiency of the method was tested and analyzed in experiments using the IEEE 14-bus system.
doi_str_mv 10.1109/TDC-LA.2012.6319125
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6319125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6319125</ieee_id><sourcerecordid>6319125</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-f906d9b3e3c151d9eedc1f946aab192b13785447a9dea530b41c828fd185e9443</originalsourceid><addsrcrecordid>eNo1T81OhDAYrDEm6soT7KUvAPbrD22PhPUvIfHCfVPgQ2uKJYASfXoxrnOZTGYymSFkDywDYPa2PpRpVWScAc9yARa4OiPXIHMteK6Bn5PEavOvubkkyTy_sQ2GK670FSkOJR3jihPtQ1xpHBc_-G-3-PhOV7-8UkdHN7kQMFD8jOHj13HTF3XhJU5bYLghF70LMyYn3pH6_q4uH9Pq-eGpLKrUW7akvWV5ZxuBogUFnUXsWuitzJ1rwPIGhDZKSu1sh04J1khoDTd9B0ahlVLsyP6v1iPicZz8sK04nk6LH55SS4E</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>DC power flow optimization with a parallel evolutionary algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>de Oliveira Gomes, Andre ; Meirelles Gouvea, Maury</creator><creatorcontrib>de Oliveira Gomes, Andre ; Meirelles Gouvea, Maury</creatorcontrib><description>A full power flow model has been used to analyze, operate, and plan power systems in the steady state. This model enables the active and reactive power flow to be analyzed and planned. With a DC power flow model, an approximated solution can be reached which minimizes the power flow in transmission lines. A method that has been used in recent years for optimization problems is the evolutionary algorithm. It has the disadvantage of great computational effort being needed when it is used to optimize large and complex systems. This paper presents a method which uses parallel computing in order to implement an evolutionary algorithm with multi-populations. In this approach, each computer can receive a population, which uses a different parameter control strategy. Thus, problems inherent in the evolutionary algorithm, such as premature convergence can be reduced, and, thus, its performance enhanced. The proposed method was validated in an active power flow exchange problem in power systems. The efficiency of the method was tested and analyzed in experiments using the IEEE 14-bus system.</description><identifier>ISBN: 9781467326728</identifier><identifier>ISBN: 1467326720</identifier><identifier>EISBN: 1467326712</identifier><identifier>EISBN: 9781467326735</identifier><identifier>EISBN: 9781467326711</identifier><identifier>EISBN: 1467326739</identifier><identifier>DOI: 10.1109/TDC-LA.2012.6319125</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computers ; DC power flow ; Evolutionary algorithm ; Evolutionary computation ; Parallel computing ; Parallel processing ; power flow ; Power system analysis ; Servers ; Service oriented architecture ; SOA ; Sociology ; Statistics</subject><ispartof>2012 Sixth IEEE/PES Transmission and Distribution: Latin America Conference and Exposition (T&amp;D-LA), 2012, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6319125$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6319125$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>de Oliveira Gomes, Andre</creatorcontrib><creatorcontrib>Meirelles Gouvea, Maury</creatorcontrib><title>DC power flow optimization with a parallel evolutionary algorithm</title><title>2012 Sixth IEEE/PES Transmission and Distribution: Latin America Conference and Exposition (T&amp;D-LA)</title><addtitle>TDC-LA</addtitle><description>A full power flow model has been used to analyze, operate, and plan power systems in the steady state. This model enables the active and reactive power flow to be analyzed and planned. With a DC power flow model, an approximated solution can be reached which minimizes the power flow in transmission lines. A method that has been used in recent years for optimization problems is the evolutionary algorithm. It has the disadvantage of great computational effort being needed when it is used to optimize large and complex systems. This paper presents a method which uses parallel computing in order to implement an evolutionary algorithm with multi-populations. In this approach, each computer can receive a population, which uses a different parameter control strategy. Thus, problems inherent in the evolutionary algorithm, such as premature convergence can be reduced, and, thus, its performance enhanced. The proposed method was validated in an active power flow exchange problem in power systems. The efficiency of the method was tested and analyzed in experiments using the IEEE 14-bus system.</description><subject>Computers</subject><subject>DC power flow</subject><subject>Evolutionary algorithm</subject><subject>Evolutionary computation</subject><subject>Parallel computing</subject><subject>Parallel processing</subject><subject>power flow</subject><subject>Power system analysis</subject><subject>Servers</subject><subject>Service oriented architecture</subject><subject>SOA</subject><subject>Sociology</subject><subject>Statistics</subject><isbn>9781467326728</isbn><isbn>1467326720</isbn><isbn>1467326712</isbn><isbn>9781467326735</isbn><isbn>9781467326711</isbn><isbn>1467326739</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1T81OhDAYrDEm6soT7KUvAPbrD22PhPUvIfHCfVPgQ2uKJYASfXoxrnOZTGYymSFkDywDYPa2PpRpVWScAc9yARa4OiPXIHMteK6Bn5PEavOvubkkyTy_sQ2GK670FSkOJR3jihPtQ1xpHBc_-G-3-PhOV7-8UkdHN7kQMFD8jOHj13HTF3XhJU5bYLghF70LMyYn3pH6_q4uH9Pq-eGpLKrUW7akvWV5ZxuBogUFnUXsWuitzJ1rwPIGhDZKSu1sh04J1khoDTd9B0ahlVLsyP6v1iPicZz8sK04nk6LH55SS4E</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>de Oliveira Gomes, Andre</creator><creator>Meirelles Gouvea, Maury</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>DC power flow optimization with a parallel evolutionary algorithm</title><author>de Oliveira Gomes, Andre ; Meirelles Gouvea, Maury</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-f906d9b3e3c151d9eedc1f946aab192b13785447a9dea530b41c828fd185e9443</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computers</topic><topic>DC power flow</topic><topic>Evolutionary algorithm</topic><topic>Evolutionary computation</topic><topic>Parallel computing</topic><topic>Parallel processing</topic><topic>power flow</topic><topic>Power system analysis</topic><topic>Servers</topic><topic>Service oriented architecture</topic><topic>SOA</topic><topic>Sociology</topic><topic>Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>de Oliveira Gomes, Andre</creatorcontrib><creatorcontrib>Meirelles Gouvea, Maury</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>de Oliveira Gomes, Andre</au><au>Meirelles Gouvea, Maury</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>DC power flow optimization with a parallel evolutionary algorithm</atitle><btitle>2012 Sixth IEEE/PES Transmission and Distribution: Latin America Conference and Exposition (T&amp;D-LA)</btitle><stitle>TDC-LA</stitle><date>2012-09</date><risdate>2012</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>9781467326728</isbn><isbn>1467326720</isbn><eisbn>1467326712</eisbn><eisbn>9781467326735</eisbn><eisbn>9781467326711</eisbn><eisbn>1467326739</eisbn><abstract>A full power flow model has been used to analyze, operate, and plan power systems in the steady state. This model enables the active and reactive power flow to be analyzed and planned. With a DC power flow model, an approximated solution can be reached which minimizes the power flow in transmission lines. A method that has been used in recent years for optimization problems is the evolutionary algorithm. It has the disadvantage of great computational effort being needed when it is used to optimize large and complex systems. This paper presents a method which uses parallel computing in order to implement an evolutionary algorithm with multi-populations. In this approach, each computer can receive a population, which uses a different parameter control strategy. Thus, problems inherent in the evolutionary algorithm, such as premature convergence can be reduced, and, thus, its performance enhanced. The proposed method was validated in an active power flow exchange problem in power systems. The efficiency of the method was tested and analyzed in experiments using the IEEE 14-bus system.</abstract><pub>IEEE</pub><doi>10.1109/TDC-LA.2012.6319125</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467326728
ispartof 2012 Sixth IEEE/PES Transmission and Distribution: Latin America Conference and Exposition (T&D-LA), 2012, p.1-6
issn
language eng
recordid cdi_ieee_primary_6319125
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computers
DC power flow
Evolutionary algorithm
Evolutionary computation
Parallel computing
Parallel processing
power flow
Power system analysis
Servers
Service oriented architecture
SOA
Sociology
Statistics
title DC power flow optimization with a parallel evolutionary algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A56%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=DC%20power%20flow%20optimization%20with%20a%20parallel%20evolutionary%20algorithm&rft.btitle=2012%20Sixth%20IEEE/PES%20Transmission%20and%20Distribution:%20Latin%20America%20Conference%20and%20Exposition%20(T&D-LA)&rft.au=de%20Oliveira%20Gomes,%20Andre&rft.date=2012-09&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=9781467326728&rft.isbn_list=1467326720&rft_id=info:doi/10.1109/TDC-LA.2012.6319125&rft_dat=%3Cieee_6IE%3E6319125%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467326712&rft.eisbn_list=9781467326735&rft.eisbn_list=9781467326711&rft.eisbn_list=1467326739&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6319125&rfr_iscdi=true