Automated process metrology in solar cell manufacturing

Optimizing a solar cell manufacturing line must take into account a variety of issues. Wafers used for solar cells are typically thinner than those used in semiconductor IC manufacturing. This makes the solar cell wafers susceptible to surface and edge defects such as deep scratches and cracks. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Velidandla, V., Garland, B., Cheung, F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 000495
container_issue
container_start_page 000489
container_title
container_volume
creator Velidandla, V.
Garland, B.
Cheung, F.
description Optimizing a solar cell manufacturing line must take into account a variety of issues. Wafers used for solar cells are typically thinner than those used in semiconductor IC manufacturing. This makes the solar cell wafers susceptible to surface and edge defects such as deep scratches and cracks. The wafer slicing operation can induce thickness non-uniformity as well as surface roughness variation. Wafer texturing (typically via etching) must result in an optimal pyramid height in the case of monocrystalline wafers and an optical grain size in the case of polycrystalline wafers. Silicon Nitride grown on the wafer can induce stress and eventual breakage of the wafer. An uneven nitride film can cause a drop in the overall efficiency of the wafer. The metal contact lines account for a significant cost in the production of a solar cell wafer. The process engineer must pay attention to the contact line height and width while minimizing the total amount of metal used. Based on all these requirements, an optical profiler, the Zeta-200, was developed to provide rapid and meaningful feedback to the process line. In this paper we present results from various process points in solar cell manufacturing, such as bare wafer roughness, silicon nitride film thickness and contact line dimensions.
doi_str_mv 10.1109/PVSC.2012.6317663
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6317663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6317663</ieee_id><sourcerecordid>6317663</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1f260d836a388ba01c317ffa22e704f4002ecd844b63ef1ab5380ab5be1bbc3a3</originalsourceid><addsrcrecordid>eNo1j81KAzEUhSMq2NY-gLjJC8x4b25MMssyaBUKCha3JckkZWR-ymRm0bd3wLo5h7P5-A5jDwg5IhRPn99fZS4ARa4ItVJ0xdaFNiiVJgCl9DVb_g8JN2wBqCAzpPGOLVP6ARBAChdMb6axb-0YKn4aeh9S4m0Yh77pj2dedzz1jR24D03DW9tN0fpxGurueM9uo21SWF96xfavL_vyLdt9bN_LzS6rCxgzjEJBZUhZMsZZQD_bxmiFCBpklLNG8JWR0ikKEa17JgNzuoDOebK0Yo9_2DqEcDgNdWuH8-HymX4BOPpI_A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automated process metrology in solar cell manufacturing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Velidandla, V. ; Garland, B. ; Cheung, F.</creator><creatorcontrib>Velidandla, V. ; Garland, B. ; Cheung, F.</creatorcontrib><description>Optimizing a solar cell manufacturing line must take into account a variety of issues. Wafers used for solar cells are typically thinner than those used in semiconductor IC manufacturing. This makes the solar cell wafers susceptible to surface and edge defects such as deep scratches and cracks. The wafer slicing operation can induce thickness non-uniformity as well as surface roughness variation. Wafer texturing (typically via etching) must result in an optimal pyramid height in the case of monocrystalline wafers and an optical grain size in the case of polycrystalline wafers. Silicon Nitride grown on the wafer can induce stress and eventual breakage of the wafer. An uneven nitride film can cause a drop in the overall efficiency of the wafer. The metal contact lines account for a significant cost in the production of a solar cell wafer. The process engineer must pay attention to the contact line height and width while minimizing the total amount of metal used. Based on all these requirements, an optical profiler, the Zeta-200, was developed to provide rapid and meaningful feedback to the process line. In this paper we present results from various process points in solar cell manufacturing, such as bare wafer roughness, silicon nitride film thickness and contact line dimensions.</description><identifier>ISSN: 0160-8371</identifier><identifier>ISBN: 1467300640</identifier><identifier>ISBN: 9781467300643</identifier><identifier>EISBN: 9781467300667</identifier><identifier>EISBN: 1467300667</identifier><identifier>EISBN: 1467300659</identifier><identifier>EISBN: 9781467300650</identifier><identifier>DOI: 10.1109/PVSC.2012.6317663</identifier><language>eng</language><publisher>IEEE</publisher><subject>Diamond-like carbon ; Photovoltaic cells ; Rough surfaces ; Silicon ; Surface roughness ; Surface treatment ; Wires</subject><ispartof>2012 38th IEEE Photovoltaic Specialists Conference, 2012, p.000489-000495</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6317663$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6317663$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Velidandla, V.</creatorcontrib><creatorcontrib>Garland, B.</creatorcontrib><creatorcontrib>Cheung, F.</creatorcontrib><title>Automated process metrology in solar cell manufacturing</title><title>2012 38th IEEE Photovoltaic Specialists Conference</title><addtitle>PVSC</addtitle><description>Optimizing a solar cell manufacturing line must take into account a variety of issues. Wafers used for solar cells are typically thinner than those used in semiconductor IC manufacturing. This makes the solar cell wafers susceptible to surface and edge defects such as deep scratches and cracks. The wafer slicing operation can induce thickness non-uniformity as well as surface roughness variation. Wafer texturing (typically via etching) must result in an optimal pyramid height in the case of monocrystalline wafers and an optical grain size in the case of polycrystalline wafers. Silicon Nitride grown on the wafer can induce stress and eventual breakage of the wafer. An uneven nitride film can cause a drop in the overall efficiency of the wafer. The metal contact lines account for a significant cost in the production of a solar cell wafer. The process engineer must pay attention to the contact line height and width while minimizing the total amount of metal used. Based on all these requirements, an optical profiler, the Zeta-200, was developed to provide rapid and meaningful feedback to the process line. In this paper we present results from various process points in solar cell manufacturing, such as bare wafer roughness, silicon nitride film thickness and contact line dimensions.</description><subject>Diamond-like carbon</subject><subject>Photovoltaic cells</subject><subject>Rough surfaces</subject><subject>Silicon</subject><subject>Surface roughness</subject><subject>Surface treatment</subject><subject>Wires</subject><issn>0160-8371</issn><isbn>1467300640</isbn><isbn>9781467300643</isbn><isbn>9781467300667</isbn><isbn>1467300667</isbn><isbn>1467300659</isbn><isbn>9781467300650</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j81KAzEUhSMq2NY-gLjJC8x4b25MMssyaBUKCha3JckkZWR-ymRm0bd3wLo5h7P5-A5jDwg5IhRPn99fZS4ARa4ItVJ0xdaFNiiVJgCl9DVb_g8JN2wBqCAzpPGOLVP6ARBAChdMb6axb-0YKn4aeh9S4m0Yh77pj2dedzz1jR24D03DW9tN0fpxGurueM9uo21SWF96xfavL_vyLdt9bN_LzS6rCxgzjEJBZUhZMsZZQD_bxmiFCBpklLNG8JWR0ikKEa17JgNzuoDOebK0Yo9_2DqEcDgNdWuH8-HymX4BOPpI_A</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Velidandla, V.</creator><creator>Garland, B.</creator><creator>Cheung, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201206</creationdate><title>Automated process metrology in solar cell manufacturing</title><author>Velidandla, V. ; Garland, B. ; Cheung, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1f260d836a388ba01c317ffa22e704f4002ecd844b63ef1ab5380ab5be1bbc3a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Diamond-like carbon</topic><topic>Photovoltaic cells</topic><topic>Rough surfaces</topic><topic>Silicon</topic><topic>Surface roughness</topic><topic>Surface treatment</topic><topic>Wires</topic><toplevel>online_resources</toplevel><creatorcontrib>Velidandla, V.</creatorcontrib><creatorcontrib>Garland, B.</creatorcontrib><creatorcontrib>Cheung, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Velidandla, V.</au><au>Garland, B.</au><au>Cheung, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automated process metrology in solar cell manufacturing</atitle><btitle>2012 38th IEEE Photovoltaic Specialists Conference</btitle><stitle>PVSC</stitle><date>2012-06</date><risdate>2012</risdate><spage>000489</spage><epage>000495</epage><pages>000489-000495</pages><issn>0160-8371</issn><isbn>1467300640</isbn><isbn>9781467300643</isbn><eisbn>9781467300667</eisbn><eisbn>1467300667</eisbn><eisbn>1467300659</eisbn><eisbn>9781467300650</eisbn><abstract>Optimizing a solar cell manufacturing line must take into account a variety of issues. Wafers used for solar cells are typically thinner than those used in semiconductor IC manufacturing. This makes the solar cell wafers susceptible to surface and edge defects such as deep scratches and cracks. The wafer slicing operation can induce thickness non-uniformity as well as surface roughness variation. Wafer texturing (typically via etching) must result in an optimal pyramid height in the case of monocrystalline wafers and an optical grain size in the case of polycrystalline wafers. Silicon Nitride grown on the wafer can induce stress and eventual breakage of the wafer. An uneven nitride film can cause a drop in the overall efficiency of the wafer. The metal contact lines account for a significant cost in the production of a solar cell wafer. The process engineer must pay attention to the contact line height and width while minimizing the total amount of metal used. Based on all these requirements, an optical profiler, the Zeta-200, was developed to provide rapid and meaningful feedback to the process line. In this paper we present results from various process points in solar cell manufacturing, such as bare wafer roughness, silicon nitride film thickness and contact line dimensions.</abstract><pub>IEEE</pub><doi>10.1109/PVSC.2012.6317663</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0160-8371
ispartof 2012 38th IEEE Photovoltaic Specialists Conference, 2012, p.000489-000495
issn 0160-8371
language eng
recordid cdi_ieee_primary_6317663
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Diamond-like carbon
Photovoltaic cells
Rough surfaces
Silicon
Surface roughness
Surface treatment
Wires
title Automated process metrology in solar cell manufacturing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A44%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automated%20process%20metrology%20in%20solar%20cell%20manufacturing&rft.btitle=2012%2038th%20IEEE%20Photovoltaic%20Specialists%20Conference&rft.au=Velidandla,%20V.&rft.date=2012-06&rft.spage=000489&rft.epage=000495&rft.pages=000489-000495&rft.issn=0160-8371&rft.isbn=1467300640&rft.isbn_list=9781467300643&rft_id=info:doi/10.1109/PVSC.2012.6317663&rft_dat=%3Cieee_6IE%3E6317663%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467300667&rft.eisbn_list=1467300667&rft.eisbn_list=1467300659&rft.eisbn_list=9781467300650&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6317663&rfr_iscdi=true