Single Seed Region Growing Algorithm in Dynamic PET Imaging (SSRG/4D-PET) for Tumor Volume Delineation in Radiotherapy Treatment Planning: Theory and Simulation
Tumor volume delineation plays a critical role in radiation treatment planning and simulation. Inaccurately defined target volume may lead to overdosing of normal structures surrounding the tumor, while potentially underdosing cancerous tissue. Conventional 3-dimensional tumor segmentation methods i...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2012-10, Vol.59 (5), p.2020-2032 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2032 |
---|---|
container_issue | 5 |
container_start_page | 2020 |
container_title | IEEE transactions on nuclear science |
container_volume | 59 |
creator | Teymurazyan, A. R. Sloboda, R. S. Riauka, T. R. Jans, Hans-Sönke F. Robinson, D. M. |
description | Tumor volume delineation plays a critical role in radiation treatment planning and simulation. Inaccurately defined target volume may lead to overdosing of normal structures surrounding the tumor, while potentially underdosing cancerous tissue. Conventional 3-dimensional tumor segmentation methods ignore the temporal information present in dynamic Positron Emission Tomography (PET) images and thus may falsely classify equal intensity voxels with completely different time activity curves (TACs) as belonging to the same tissue. We present a novel approach to tumor volume delineation in dynamic PET based on TAC differences. Principal Component Analysis, nonlinear curve-fitting, region growing, and morphological reconstruction are integrated within a single framework for this purpose. A partially-supervised approach is pursued in order to allow an expert reader to utilize the information available from other imaging modalities routinely used in conjunction with PET. In our scheme, this includes the definition of a tumor encompassing mask and selection of a seed site within the suspected tumor, while further delineation is performed by the algorithm automatically. Performance of the proposed algorithm is compared to five other methods. Simulations and a phantom study show that accurate tumor volume delineation can be achieved. |
doi_str_mv | 10.1109/TNS.2012.2212723 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6316154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6316154</ieee_id><sourcerecordid>10_1109_TNS_2012_2212723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-8be34eb982c3b4bd65044ffe996e4f53a78e3fc11cbb0bfcde8c5b7b5b3c62553</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqVwR-LiIxzS-jdNuCFaSqUKqiZwjWxn0xolDnJSob4Nj4pLEZdd7ezMdxiErikZUUrScf6SjRihbMQYZRPGT9CASplEVE6SUzQghCZRKtL0HF103Uc4hSRygL4z6zY14AygxGvY2NbhuW-_goof6k3rbb9tsHV4uneqsQavZjleNGpzMNxm2Xo-FtMoiHe4aj3Od02Y7229awBPobYOVH9gBsJalbbtt-DV5x7nPjwacD1e1cq5QLvH-RZav8fKlTizza7-TV6is0rVHVz97SF6e5rlj8_R8nW-eHxYRobFvI8SDVyAThNmuBa6jCURoqogTWMQleRqkgCvDKVGa6IrU0JipJ5oqbmJmZR8iMiRa3zbdR6q4tPbRvl9QUlxaLgIDReHhou_hkPk5hixAPBvjzmNqRT8B27YeZs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Single Seed Region Growing Algorithm in Dynamic PET Imaging (SSRG/4D-PET) for Tumor Volume Delineation in Radiotherapy Treatment Planning: Theory and Simulation</title><source>IEEE Electronic Library (IEL)</source><creator>Teymurazyan, A. R. ; Sloboda, R. S. ; Riauka, T. R. ; Jans, Hans-Sönke F. ; Robinson, D. M.</creator><creatorcontrib>Teymurazyan, A. R. ; Sloboda, R. S. ; Riauka, T. R. ; Jans, Hans-Sönke F. ; Robinson, D. M.</creatorcontrib><description>Tumor volume delineation plays a critical role in radiation treatment planning and simulation. Inaccurately defined target volume may lead to overdosing of normal structures surrounding the tumor, while potentially underdosing cancerous tissue. Conventional 3-dimensional tumor segmentation methods ignore the temporal information present in dynamic Positron Emission Tomography (PET) images and thus may falsely classify equal intensity voxels with completely different time activity curves (TACs) as belonging to the same tissue. We present a novel approach to tumor volume delineation in dynamic PET based on TAC differences. Principal Component Analysis, nonlinear curve-fitting, region growing, and morphological reconstruction are integrated within a single framework for this purpose. A partially-supervised approach is pursued in order to allow an expert reader to utilize the information available from other imaging modalities routinely used in conjunction with PET. In our scheme, this includes the definition of a tumor encompassing mask and selection of a seed site within the suspected tumor, while further delineation is performed by the algorithm automatically. Performance of the proposed algorithm is compared to five other methods. Simulations and a phantom study show that accurate tumor volume delineation can be achieved.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2012.2212723</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>IEEE</publisher><subject>Heuristic algorithms ; Image segmentation ; Kinetic theory ; Mathematical model ; Noise ; nuclear imaging ; nuclear medicine ; Positron emission tomography ; positron emission tomography (PET) ; Principal component analysis ; Tumors</subject><ispartof>IEEE transactions on nuclear science, 2012-10, Vol.59 (5), p.2020-2032</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-8be34eb982c3b4bd65044ffe996e4f53a78e3fc11cbb0bfcde8c5b7b5b3c62553</citedby><cites>FETCH-LOGICAL-c263t-8be34eb982c3b4bd65044ffe996e4f53a78e3fc11cbb0bfcde8c5b7b5b3c62553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6316154$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6316154$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Teymurazyan, A. R.</creatorcontrib><creatorcontrib>Sloboda, R. S.</creatorcontrib><creatorcontrib>Riauka, T. R.</creatorcontrib><creatorcontrib>Jans, Hans-Sönke F.</creatorcontrib><creatorcontrib>Robinson, D. M.</creatorcontrib><title>Single Seed Region Growing Algorithm in Dynamic PET Imaging (SSRG/4D-PET) for Tumor Volume Delineation in Radiotherapy Treatment Planning: Theory and Simulation</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Tumor volume delineation plays a critical role in radiation treatment planning and simulation. Inaccurately defined target volume may lead to overdosing of normal structures surrounding the tumor, while potentially underdosing cancerous tissue. Conventional 3-dimensional tumor segmentation methods ignore the temporal information present in dynamic Positron Emission Tomography (PET) images and thus may falsely classify equal intensity voxels with completely different time activity curves (TACs) as belonging to the same tissue. We present a novel approach to tumor volume delineation in dynamic PET based on TAC differences. Principal Component Analysis, nonlinear curve-fitting, region growing, and morphological reconstruction are integrated within a single framework for this purpose. A partially-supervised approach is pursued in order to allow an expert reader to utilize the information available from other imaging modalities routinely used in conjunction with PET. In our scheme, this includes the definition of a tumor encompassing mask and selection of a seed site within the suspected tumor, while further delineation is performed by the algorithm automatically. Performance of the proposed algorithm is compared to five other methods. Simulations and a phantom study show that accurate tumor volume delineation can be achieved.</description><subject>Heuristic algorithms</subject><subject>Image segmentation</subject><subject>Kinetic theory</subject><subject>Mathematical model</subject><subject>Noise</subject><subject>nuclear imaging</subject><subject>nuclear medicine</subject><subject>Positron emission tomography</subject><subject>positron emission tomography (PET)</subject><subject>Principal component analysis</subject><subject>Tumors</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhC0EEqVwR-LiIxzS-jdNuCFaSqUKqiZwjWxn0xolDnJSob4Nj4pLEZdd7ezMdxiErikZUUrScf6SjRihbMQYZRPGT9CASplEVE6SUzQghCZRKtL0HF103Uc4hSRygL4z6zY14AygxGvY2NbhuW-_goof6k3rbb9tsHV4uneqsQavZjleNGpzMNxm2Xo-FtMoiHe4aj3Od02Y7229awBPobYOVH9gBsJalbbtt-DV5x7nPjwacD1e1cq5QLvH-RZav8fKlTizza7-TV6is0rVHVz97SF6e5rlj8_R8nW-eHxYRobFvI8SDVyAThNmuBa6jCURoqogTWMQleRqkgCvDKVGa6IrU0JipJ5oqbmJmZR8iMiRa3zbdR6q4tPbRvl9QUlxaLgIDReHhou_hkPk5hixAPBvjzmNqRT8B27YeZs</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Teymurazyan, A. R.</creator><creator>Sloboda, R. S.</creator><creator>Riauka, T. R.</creator><creator>Jans, Hans-Sönke F.</creator><creator>Robinson, D. M.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121001</creationdate><title>Single Seed Region Growing Algorithm in Dynamic PET Imaging (SSRG/4D-PET) for Tumor Volume Delineation in Radiotherapy Treatment Planning: Theory and Simulation</title><author>Teymurazyan, A. R. ; Sloboda, R. S. ; Riauka, T. R. ; Jans, Hans-Sönke F. ; Robinson, D. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-8be34eb982c3b4bd65044ffe996e4f53a78e3fc11cbb0bfcde8c5b7b5b3c62553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Heuristic algorithms</topic><topic>Image segmentation</topic><topic>Kinetic theory</topic><topic>Mathematical model</topic><topic>Noise</topic><topic>nuclear imaging</topic><topic>nuclear medicine</topic><topic>Positron emission tomography</topic><topic>positron emission tomography (PET)</topic><topic>Principal component analysis</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teymurazyan, A. R.</creatorcontrib><creatorcontrib>Sloboda, R. S.</creatorcontrib><creatorcontrib>Riauka, T. R.</creatorcontrib><creatorcontrib>Jans, Hans-Sönke F.</creatorcontrib><creatorcontrib>Robinson, D. M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Teymurazyan, A. R.</au><au>Sloboda, R. S.</au><au>Riauka, T. R.</au><au>Jans, Hans-Sönke F.</au><au>Robinson, D. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single Seed Region Growing Algorithm in Dynamic PET Imaging (SSRG/4D-PET) for Tumor Volume Delineation in Radiotherapy Treatment Planning: Theory and Simulation</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>59</volume><issue>5</issue><spage>2020</spage><epage>2032</epage><pages>2020-2032</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Tumor volume delineation plays a critical role in radiation treatment planning and simulation. Inaccurately defined target volume may lead to overdosing of normal structures surrounding the tumor, while potentially underdosing cancerous tissue. Conventional 3-dimensional tumor segmentation methods ignore the temporal information present in dynamic Positron Emission Tomography (PET) images and thus may falsely classify equal intensity voxels with completely different time activity curves (TACs) as belonging to the same tissue. We present a novel approach to tumor volume delineation in dynamic PET based on TAC differences. Principal Component Analysis, nonlinear curve-fitting, region growing, and morphological reconstruction are integrated within a single framework for this purpose. A partially-supervised approach is pursued in order to allow an expert reader to utilize the information available from other imaging modalities routinely used in conjunction with PET. In our scheme, this includes the definition of a tumor encompassing mask and selection of a seed site within the suspected tumor, while further delineation is performed by the algorithm automatically. Performance of the proposed algorithm is compared to five other methods. Simulations and a phantom study show that accurate tumor volume delineation can be achieved.</abstract><pub>IEEE</pub><doi>10.1109/TNS.2012.2212723</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2012-10, Vol.59 (5), p.2020-2032 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_ieee_primary_6316154 |
source | IEEE Electronic Library (IEL) |
subjects | Heuristic algorithms Image segmentation Kinetic theory Mathematical model Noise nuclear imaging nuclear medicine Positron emission tomography positron emission tomography (PET) Principal component analysis Tumors |
title | Single Seed Region Growing Algorithm in Dynamic PET Imaging (SSRG/4D-PET) for Tumor Volume Delineation in Radiotherapy Treatment Planning: Theory and Simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A59%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20Seed%20Region%20Growing%20Algorithm%20in%20Dynamic%20PET%20Imaging%20(SSRG/4D-PET)%20for%20Tumor%20Volume%20Delineation%20in%20Radiotherapy%20Treatment%20Planning:%20Theory%20and%20Simulation&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Teymurazyan,%20A.%20R.&rft.date=2012-10-01&rft.volume=59&rft.issue=5&rft.spage=2020&rft.epage=2032&rft.pages=2020-2032&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2012.2212723&rft_dat=%3Ccrossref_RIE%3E10_1109_TNS_2012_2212723%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6316154&rfr_iscdi=true |