Single Seed Region Growing Algorithm in Dynamic PET Imaging (SSRG/4D-PET) for Tumor Volume Delineation in Radiotherapy Treatment Planning: Theory and Simulation

Tumor volume delineation plays a critical role in radiation treatment planning and simulation. Inaccurately defined target volume may lead to overdosing of normal structures surrounding the tumor, while potentially underdosing cancerous tissue. Conventional 3-dimensional tumor segmentation methods i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2012-10, Vol.59 (5), p.2020-2032
Hauptverfasser: Teymurazyan, A. R., Sloboda, R. S., Riauka, T. R., Jans, Hans-Sönke F., Robinson, D. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2032
container_issue 5
container_start_page 2020
container_title IEEE transactions on nuclear science
container_volume 59
creator Teymurazyan, A. R.
Sloboda, R. S.
Riauka, T. R.
Jans, Hans-Sönke F.
Robinson, D. M.
description Tumor volume delineation plays a critical role in radiation treatment planning and simulation. Inaccurately defined target volume may lead to overdosing of normal structures surrounding the tumor, while potentially underdosing cancerous tissue. Conventional 3-dimensional tumor segmentation methods ignore the temporal information present in dynamic Positron Emission Tomography (PET) images and thus may falsely classify equal intensity voxels with completely different time activity curves (TACs) as belonging to the same tissue. We present a novel approach to tumor volume delineation in dynamic PET based on TAC differences. Principal Component Analysis, nonlinear curve-fitting, region growing, and morphological reconstruction are integrated within a single framework for this purpose. A partially-supervised approach is pursued in order to allow an expert reader to utilize the information available from other imaging modalities routinely used in conjunction with PET. In our scheme, this includes the definition of a tumor encompassing mask and selection of a seed site within the suspected tumor, while further delineation is performed by the algorithm automatically. Performance of the proposed algorithm is compared to five other methods. Simulations and a phantom study show that accurate tumor volume delineation can be achieved.
doi_str_mv 10.1109/TNS.2012.2212723
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6316154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6316154</ieee_id><sourcerecordid>10_1109_TNS_2012_2212723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-8be34eb982c3b4bd65044ffe996e4f53a78e3fc11cbb0bfcde8c5b7b5b3c62553</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqVwR-LiIxzS-jdNuCFaSqUKqiZwjWxn0xolDnJSob4Nj4pLEZdd7ezMdxiErikZUUrScf6SjRihbMQYZRPGT9CASplEVE6SUzQghCZRKtL0HF103Uc4hSRygL4z6zY14AygxGvY2NbhuW-_goof6k3rbb9tsHV4uneqsQavZjleNGpzMNxm2Xo-FtMoiHe4aj3Od02Y7229awBPobYOVH9gBsJalbbtt-DV5x7nPjwacD1e1cq5QLvH-RZav8fKlTizza7-TV6is0rVHVz97SF6e5rlj8_R8nW-eHxYRobFvI8SDVyAThNmuBa6jCURoqogTWMQleRqkgCvDKVGa6IrU0JipJ5oqbmJmZR8iMiRa3zbdR6q4tPbRvl9QUlxaLgIDReHhou_hkPk5hixAPBvjzmNqRT8B27YeZs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Single Seed Region Growing Algorithm in Dynamic PET Imaging (SSRG/4D-PET) for Tumor Volume Delineation in Radiotherapy Treatment Planning: Theory and Simulation</title><source>IEEE Electronic Library (IEL)</source><creator>Teymurazyan, A. R. ; Sloboda, R. S. ; Riauka, T. R. ; Jans, Hans-Sönke F. ; Robinson, D. M.</creator><creatorcontrib>Teymurazyan, A. R. ; Sloboda, R. S. ; Riauka, T. R. ; Jans, Hans-Sönke F. ; Robinson, D. M.</creatorcontrib><description>Tumor volume delineation plays a critical role in radiation treatment planning and simulation. Inaccurately defined target volume may lead to overdosing of normal structures surrounding the tumor, while potentially underdosing cancerous tissue. Conventional 3-dimensional tumor segmentation methods ignore the temporal information present in dynamic Positron Emission Tomography (PET) images and thus may falsely classify equal intensity voxels with completely different time activity curves (TACs) as belonging to the same tissue. We present a novel approach to tumor volume delineation in dynamic PET based on TAC differences. Principal Component Analysis, nonlinear curve-fitting, region growing, and morphological reconstruction are integrated within a single framework for this purpose. A partially-supervised approach is pursued in order to allow an expert reader to utilize the information available from other imaging modalities routinely used in conjunction with PET. In our scheme, this includes the definition of a tumor encompassing mask and selection of a seed site within the suspected tumor, while further delineation is performed by the algorithm automatically. Performance of the proposed algorithm is compared to five other methods. Simulations and a phantom study show that accurate tumor volume delineation can be achieved.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2012.2212723</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>IEEE</publisher><subject>Heuristic algorithms ; Image segmentation ; Kinetic theory ; Mathematical model ; Noise ; nuclear imaging ; nuclear medicine ; Positron emission tomography ; positron emission tomography (PET) ; Principal component analysis ; Tumors</subject><ispartof>IEEE transactions on nuclear science, 2012-10, Vol.59 (5), p.2020-2032</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-8be34eb982c3b4bd65044ffe996e4f53a78e3fc11cbb0bfcde8c5b7b5b3c62553</citedby><cites>FETCH-LOGICAL-c263t-8be34eb982c3b4bd65044ffe996e4f53a78e3fc11cbb0bfcde8c5b7b5b3c62553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6316154$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6316154$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Teymurazyan, A. R.</creatorcontrib><creatorcontrib>Sloboda, R. S.</creatorcontrib><creatorcontrib>Riauka, T. R.</creatorcontrib><creatorcontrib>Jans, Hans-Sönke F.</creatorcontrib><creatorcontrib>Robinson, D. M.</creatorcontrib><title>Single Seed Region Growing Algorithm in Dynamic PET Imaging (SSRG/4D-PET) for Tumor Volume Delineation in Radiotherapy Treatment Planning: Theory and Simulation</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Tumor volume delineation plays a critical role in radiation treatment planning and simulation. Inaccurately defined target volume may lead to overdosing of normal structures surrounding the tumor, while potentially underdosing cancerous tissue. Conventional 3-dimensional tumor segmentation methods ignore the temporal information present in dynamic Positron Emission Tomography (PET) images and thus may falsely classify equal intensity voxels with completely different time activity curves (TACs) as belonging to the same tissue. We present a novel approach to tumor volume delineation in dynamic PET based on TAC differences. Principal Component Analysis, nonlinear curve-fitting, region growing, and morphological reconstruction are integrated within a single framework for this purpose. A partially-supervised approach is pursued in order to allow an expert reader to utilize the information available from other imaging modalities routinely used in conjunction with PET. In our scheme, this includes the definition of a tumor encompassing mask and selection of a seed site within the suspected tumor, while further delineation is performed by the algorithm automatically. Performance of the proposed algorithm is compared to five other methods. Simulations and a phantom study show that accurate tumor volume delineation can be achieved.</description><subject>Heuristic algorithms</subject><subject>Image segmentation</subject><subject>Kinetic theory</subject><subject>Mathematical model</subject><subject>Noise</subject><subject>nuclear imaging</subject><subject>nuclear medicine</subject><subject>Positron emission tomography</subject><subject>positron emission tomography (PET)</subject><subject>Principal component analysis</subject><subject>Tumors</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhC0EEqVwR-LiIxzS-jdNuCFaSqUKqiZwjWxn0xolDnJSob4Nj4pLEZdd7ezMdxiErikZUUrScf6SjRihbMQYZRPGT9CASplEVE6SUzQghCZRKtL0HF103Uc4hSRygL4z6zY14AygxGvY2NbhuW-_goof6k3rbb9tsHV4uneqsQavZjleNGpzMNxm2Xo-FtMoiHe4aj3Od02Y7229awBPobYOVH9gBsJalbbtt-DV5x7nPjwacD1e1cq5QLvH-RZav8fKlTizza7-TV6is0rVHVz97SF6e5rlj8_R8nW-eHxYRobFvI8SDVyAThNmuBa6jCURoqogTWMQleRqkgCvDKVGa6IrU0JipJ5oqbmJmZR8iMiRa3zbdR6q4tPbRvl9QUlxaLgIDReHhou_hkPk5hixAPBvjzmNqRT8B27YeZs</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Teymurazyan, A. R.</creator><creator>Sloboda, R. S.</creator><creator>Riauka, T. R.</creator><creator>Jans, Hans-Sönke F.</creator><creator>Robinson, D. M.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121001</creationdate><title>Single Seed Region Growing Algorithm in Dynamic PET Imaging (SSRG/4D-PET) for Tumor Volume Delineation in Radiotherapy Treatment Planning: Theory and Simulation</title><author>Teymurazyan, A. R. ; Sloboda, R. S. ; Riauka, T. R. ; Jans, Hans-Sönke F. ; Robinson, D. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-8be34eb982c3b4bd65044ffe996e4f53a78e3fc11cbb0bfcde8c5b7b5b3c62553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Heuristic algorithms</topic><topic>Image segmentation</topic><topic>Kinetic theory</topic><topic>Mathematical model</topic><topic>Noise</topic><topic>nuclear imaging</topic><topic>nuclear medicine</topic><topic>Positron emission tomography</topic><topic>positron emission tomography (PET)</topic><topic>Principal component analysis</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teymurazyan, A. R.</creatorcontrib><creatorcontrib>Sloboda, R. S.</creatorcontrib><creatorcontrib>Riauka, T. R.</creatorcontrib><creatorcontrib>Jans, Hans-Sönke F.</creatorcontrib><creatorcontrib>Robinson, D. M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Teymurazyan, A. R.</au><au>Sloboda, R. S.</au><au>Riauka, T. R.</au><au>Jans, Hans-Sönke F.</au><au>Robinson, D. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single Seed Region Growing Algorithm in Dynamic PET Imaging (SSRG/4D-PET) for Tumor Volume Delineation in Radiotherapy Treatment Planning: Theory and Simulation</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>59</volume><issue>5</issue><spage>2020</spage><epage>2032</epage><pages>2020-2032</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Tumor volume delineation plays a critical role in radiation treatment planning and simulation. Inaccurately defined target volume may lead to overdosing of normal structures surrounding the tumor, while potentially underdosing cancerous tissue. Conventional 3-dimensional tumor segmentation methods ignore the temporal information present in dynamic Positron Emission Tomography (PET) images and thus may falsely classify equal intensity voxels with completely different time activity curves (TACs) as belonging to the same tissue. We present a novel approach to tumor volume delineation in dynamic PET based on TAC differences. Principal Component Analysis, nonlinear curve-fitting, region growing, and morphological reconstruction are integrated within a single framework for this purpose. A partially-supervised approach is pursued in order to allow an expert reader to utilize the information available from other imaging modalities routinely used in conjunction with PET. In our scheme, this includes the definition of a tumor encompassing mask and selection of a seed site within the suspected tumor, while further delineation is performed by the algorithm automatically. Performance of the proposed algorithm is compared to five other methods. Simulations and a phantom study show that accurate tumor volume delineation can be achieved.</abstract><pub>IEEE</pub><doi>10.1109/TNS.2012.2212723</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2012-10, Vol.59 (5), p.2020-2032
issn 0018-9499
1558-1578
language eng
recordid cdi_ieee_primary_6316154
source IEEE Electronic Library (IEL)
subjects Heuristic algorithms
Image segmentation
Kinetic theory
Mathematical model
Noise
nuclear imaging
nuclear medicine
Positron emission tomography
positron emission tomography (PET)
Principal component analysis
Tumors
title Single Seed Region Growing Algorithm in Dynamic PET Imaging (SSRG/4D-PET) for Tumor Volume Delineation in Radiotherapy Treatment Planning: Theory and Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A59%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20Seed%20Region%20Growing%20Algorithm%20in%20Dynamic%20PET%20Imaging%20(SSRG/4D-PET)%20for%20Tumor%20Volume%20Delineation%20in%20Radiotherapy%20Treatment%20Planning:%20Theory%20and%20Simulation&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Teymurazyan,%20A.%20R.&rft.date=2012-10-01&rft.volume=59&rft.issue=5&rft.spage=2020&rft.epage=2032&rft.pages=2020-2032&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2012.2212723&rft_dat=%3Ccrossref_RIE%3E10_1109_TNS_2012_2212723%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6316154&rfr_iscdi=true