Randomized Model Predictive Control for stochastic linear systems
This paper is concerned with the design of state-feedback control laws for linear time invariant systems that are subject to stochastic additive disturbances, and probabilistic constraints on the states. The design is based on a stochastic Model Predictive Control (MPC) approach, for which a randomi...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 422 |
---|---|
container_issue | |
container_start_page | 417 |
container_title | |
container_volume | |
creator | Schildbach, G. Calafiore, G. C. Fagiano, L. Morari, M. |
description | This paper is concerned with the design of state-feedback control laws for linear time invariant systems that are subject to stochastic additive disturbances, and probabilistic constraints on the states. The design is based on a stochastic Model Predictive Control (MPC) approach, for which a randomization technique is applied in order to find a suboptimal solution to the underlying, generally non-convex chance constrained program. The proposed method yields a linear or quadratic program to be solved online at each time step, whose complexity is the same as that of a nominal MPC problem, i.e. if no disturbances were present. Furthermore, it is shown how the quality of the sub-optimal solution can be improved through a procedure for the removal of sampled constraints a-posteriori, at the price of increased online computation efforts. Finally, this randomized approach can be combined with further constraint tightening, in order to guarantee recursive feasibility for the closed loop system. |
doi_str_mv | 10.1109/ACC.2012.6315142 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6315142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6315142</ieee_id><sourcerecordid>6315142</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-87c214222221dc0e618ae1f466b0ad8e45b544e71b0cb639b64c6e4d5a8318183</originalsourceid><addsrcrecordid>eNotUEtLxDAYjC-wrnsXvPQPtObLu8dSfMGKInpe0uQrRtpGmiKsv96KncvADDMMQ8gV0BKAVjd105SMAisVBwmCHZFtpQ0IpTkDyugxyRjXppBGwcnqSa2XqNSnJKNa8AIUVOfkIqVPSqGqFM1I_WpHH4fwgz5_ih77_GVCH9wcvjFv4jhPsc-7OOVpju7Dpjm4vA8j2kU5pBmHdEnOOtsn3K68Ie93t2_NQ7F7vn9s6l0RQMu5MNqxZfYfwDuKCoxF6IRSLbXeoJCtFAI1tNS1iletEk6h8NIaDgYM35Dr_96AiPuvKQx2OuzXN_gvBRxN1g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Randomized Model Predictive Control for stochastic linear systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Schildbach, G. ; Calafiore, G. C. ; Fagiano, L. ; Morari, M.</creator><creatorcontrib>Schildbach, G. ; Calafiore, G. C. ; Fagiano, L. ; Morari, M.</creatorcontrib><description>This paper is concerned with the design of state-feedback control laws for linear time invariant systems that are subject to stochastic additive disturbances, and probabilistic constraints on the states. The design is based on a stochastic Model Predictive Control (MPC) approach, for which a randomization technique is applied in order to find a suboptimal solution to the underlying, generally non-convex chance constrained program. The proposed method yields a linear or quadratic program to be solved online at each time step, whose complexity is the same as that of a nominal MPC problem, i.e. if no disturbances were present. Furthermore, it is shown how the quality of the sub-optimal solution can be improved through a procedure for the removal of sampled constraints a-posteriori, at the price of increased online computation efforts. Finally, this randomized approach can be combined with further constraint tightening, in order to guarantee recursive feasibility for the closed loop system.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 9781457710957</identifier><identifier>ISBN: 1457710951</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 9781467321020</identifier><identifier>EISBN: 9781457710940</identifier><identifier>EISBN: 1467321028</identifier><identifier>EISBN: 1457710943</identifier><identifier>EISBN: 9781457710964</identifier><identifier>EISBN: 145771096X</identifier><identifier>DOI: 10.1109/ACC.2012.6315142</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cost function ; Optimal control ; Predictive control ; Probabilistic logic ; Stochastic processes ; Vectors</subject><ispartof>2012 American Control Conference (ACC), 2012, p.417-422</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6315142$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6315142$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schildbach, G.</creatorcontrib><creatorcontrib>Calafiore, G. C.</creatorcontrib><creatorcontrib>Fagiano, L.</creatorcontrib><creatorcontrib>Morari, M.</creatorcontrib><title>Randomized Model Predictive Control for stochastic linear systems</title><title>2012 American Control Conference (ACC)</title><addtitle>ACC</addtitle><description>This paper is concerned with the design of state-feedback control laws for linear time invariant systems that are subject to stochastic additive disturbances, and probabilistic constraints on the states. The design is based on a stochastic Model Predictive Control (MPC) approach, for which a randomization technique is applied in order to find a suboptimal solution to the underlying, generally non-convex chance constrained program. The proposed method yields a linear or quadratic program to be solved online at each time step, whose complexity is the same as that of a nominal MPC problem, i.e. if no disturbances were present. Furthermore, it is shown how the quality of the sub-optimal solution can be improved through a procedure for the removal of sampled constraints a-posteriori, at the price of increased online computation efforts. Finally, this randomized approach can be combined with further constraint tightening, in order to guarantee recursive feasibility for the closed loop system.</description><subject>Cost function</subject><subject>Optimal control</subject><subject>Predictive control</subject><subject>Probabilistic logic</subject><subject>Stochastic processes</subject><subject>Vectors</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>9781457710957</isbn><isbn>1457710951</isbn><isbn>9781467321020</isbn><isbn>9781457710940</isbn><isbn>1467321028</isbn><isbn>1457710943</isbn><isbn>9781457710964</isbn><isbn>145771096X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUEtLxDAYjC-wrnsXvPQPtObLu8dSfMGKInpe0uQrRtpGmiKsv96KncvADDMMQ8gV0BKAVjd105SMAisVBwmCHZFtpQ0IpTkDyugxyRjXppBGwcnqSa2XqNSnJKNa8AIUVOfkIqVPSqGqFM1I_WpHH4fwgz5_ih77_GVCH9wcvjFv4jhPsc-7OOVpju7Dpjm4vA8j2kU5pBmHdEnOOtsn3K68Ie93t2_NQ7F7vn9s6l0RQMu5MNqxZfYfwDuKCoxF6IRSLbXeoJCtFAI1tNS1iletEk6h8NIaDgYM35Dr_96AiPuvKQx2OuzXN_gvBRxN1g</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Schildbach, G.</creator><creator>Calafiore, G. C.</creator><creator>Fagiano, L.</creator><creator>Morari, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201206</creationdate><title>Randomized Model Predictive Control for stochastic linear systems</title><author>Schildbach, G. ; Calafiore, G. C. ; Fagiano, L. ; Morari, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-87c214222221dc0e618ae1f466b0ad8e45b544e71b0cb639b64c6e4d5a8318183</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cost function</topic><topic>Optimal control</topic><topic>Predictive control</topic><topic>Probabilistic logic</topic><topic>Stochastic processes</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Schildbach, G.</creatorcontrib><creatorcontrib>Calafiore, G. C.</creatorcontrib><creatorcontrib>Fagiano, L.</creatorcontrib><creatorcontrib>Morari, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schildbach, G.</au><au>Calafiore, G. C.</au><au>Fagiano, L.</au><au>Morari, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Randomized Model Predictive Control for stochastic linear systems</atitle><btitle>2012 American Control Conference (ACC)</btitle><stitle>ACC</stitle><date>2012-06</date><risdate>2012</risdate><spage>417</spage><epage>422</epage><pages>417-422</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>9781457710957</isbn><isbn>1457710951</isbn><eisbn>9781467321020</eisbn><eisbn>9781457710940</eisbn><eisbn>1467321028</eisbn><eisbn>1457710943</eisbn><eisbn>9781457710964</eisbn><eisbn>145771096X</eisbn><abstract>This paper is concerned with the design of state-feedback control laws for linear time invariant systems that are subject to stochastic additive disturbances, and probabilistic constraints on the states. The design is based on a stochastic Model Predictive Control (MPC) approach, for which a randomization technique is applied in order to find a suboptimal solution to the underlying, generally non-convex chance constrained program. The proposed method yields a linear or quadratic program to be solved online at each time step, whose complexity is the same as that of a nominal MPC problem, i.e. if no disturbances were present. Furthermore, it is shown how the quality of the sub-optimal solution can be improved through a procedure for the removal of sampled constraints a-posteriori, at the price of increased online computation efforts. Finally, this randomized approach can be combined with further constraint tightening, in order to guarantee recursive feasibility for the closed loop system.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2012.6315142</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0743-1619 |
ispartof | 2012 American Control Conference (ACC), 2012, p.417-422 |
issn | 0743-1619 2378-5861 |
language | eng |
recordid | cdi_ieee_primary_6315142 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cost function Optimal control Predictive control Probabilistic logic Stochastic processes Vectors |
title | Randomized Model Predictive Control for stochastic linear systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A02%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Randomized%20Model%20Predictive%20Control%20for%20stochastic%20linear%20systems&rft.btitle=2012%20American%20Control%20Conference%20(ACC)&rft.au=Schildbach,%20G.&rft.date=2012-06&rft.spage=417&rft.epage=422&rft.pages=417-422&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=9781457710957&rft.isbn_list=1457710951&rft_id=info:doi/10.1109/ACC.2012.6315142&rft_dat=%3Cieee_6IE%3E6315142%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467321020&rft.eisbn_list=9781457710940&rft.eisbn_list=1467321028&rft.eisbn_list=1457710943&rft.eisbn_list=9781457710964&rft.eisbn_list=145771096X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6315142&rfr_iscdi=true |