Randomized Model Predictive Control for stochastic linear systems

This paper is concerned with the design of state-feedback control laws for linear time invariant systems that are subject to stochastic additive disturbances, and probabilistic constraints on the states. The design is based on a stochastic Model Predictive Control (MPC) approach, for which a randomi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schildbach, G., Calafiore, G. C., Fagiano, L., Morari, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 422
container_issue
container_start_page 417
container_title
container_volume
creator Schildbach, G.
Calafiore, G. C.
Fagiano, L.
Morari, M.
description This paper is concerned with the design of state-feedback control laws for linear time invariant systems that are subject to stochastic additive disturbances, and probabilistic constraints on the states. The design is based on a stochastic Model Predictive Control (MPC) approach, for which a randomization technique is applied in order to find a suboptimal solution to the underlying, generally non-convex chance constrained program. The proposed method yields a linear or quadratic program to be solved online at each time step, whose complexity is the same as that of a nominal MPC problem, i.e. if no disturbances were present. Furthermore, it is shown how the quality of the sub-optimal solution can be improved through a procedure for the removal of sampled constraints a-posteriori, at the price of increased online computation efforts. Finally, this randomized approach can be combined with further constraint tightening, in order to guarantee recursive feasibility for the closed loop system.
doi_str_mv 10.1109/ACC.2012.6315142
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6315142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6315142</ieee_id><sourcerecordid>6315142</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-87c214222221dc0e618ae1f466b0ad8e45b544e71b0cb639b64c6e4d5a8318183</originalsourceid><addsrcrecordid>eNotUEtLxDAYjC-wrnsXvPQPtObLu8dSfMGKInpe0uQrRtpGmiKsv96KncvADDMMQ8gV0BKAVjd105SMAisVBwmCHZFtpQ0IpTkDyugxyRjXppBGwcnqSa2XqNSnJKNa8AIUVOfkIqVPSqGqFM1I_WpHH4fwgz5_ih77_GVCH9wcvjFv4jhPsc-7OOVpju7Dpjm4vA8j2kU5pBmHdEnOOtsn3K68Ie93t2_NQ7F7vn9s6l0RQMu5MNqxZfYfwDuKCoxF6IRSLbXeoJCtFAI1tNS1iletEk6h8NIaDgYM35Dr_96AiPuvKQx2OuzXN_gvBRxN1g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Randomized Model Predictive Control for stochastic linear systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Schildbach, G. ; Calafiore, G. C. ; Fagiano, L. ; Morari, M.</creator><creatorcontrib>Schildbach, G. ; Calafiore, G. C. ; Fagiano, L. ; Morari, M.</creatorcontrib><description>This paper is concerned with the design of state-feedback control laws for linear time invariant systems that are subject to stochastic additive disturbances, and probabilistic constraints on the states. The design is based on a stochastic Model Predictive Control (MPC) approach, for which a randomization technique is applied in order to find a suboptimal solution to the underlying, generally non-convex chance constrained program. The proposed method yields a linear or quadratic program to be solved online at each time step, whose complexity is the same as that of a nominal MPC problem, i.e. if no disturbances were present. Furthermore, it is shown how the quality of the sub-optimal solution can be improved through a procedure for the removal of sampled constraints a-posteriori, at the price of increased online computation efforts. Finally, this randomized approach can be combined with further constraint tightening, in order to guarantee recursive feasibility for the closed loop system.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 9781457710957</identifier><identifier>ISBN: 1457710951</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 9781467321020</identifier><identifier>EISBN: 9781457710940</identifier><identifier>EISBN: 1467321028</identifier><identifier>EISBN: 1457710943</identifier><identifier>EISBN: 9781457710964</identifier><identifier>EISBN: 145771096X</identifier><identifier>DOI: 10.1109/ACC.2012.6315142</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cost function ; Optimal control ; Predictive control ; Probabilistic logic ; Stochastic processes ; Vectors</subject><ispartof>2012 American Control Conference (ACC), 2012, p.417-422</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6315142$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6315142$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schildbach, G.</creatorcontrib><creatorcontrib>Calafiore, G. C.</creatorcontrib><creatorcontrib>Fagiano, L.</creatorcontrib><creatorcontrib>Morari, M.</creatorcontrib><title>Randomized Model Predictive Control for stochastic linear systems</title><title>2012 American Control Conference (ACC)</title><addtitle>ACC</addtitle><description>This paper is concerned with the design of state-feedback control laws for linear time invariant systems that are subject to stochastic additive disturbances, and probabilistic constraints on the states. The design is based on a stochastic Model Predictive Control (MPC) approach, for which a randomization technique is applied in order to find a suboptimal solution to the underlying, generally non-convex chance constrained program. The proposed method yields a linear or quadratic program to be solved online at each time step, whose complexity is the same as that of a nominal MPC problem, i.e. if no disturbances were present. Furthermore, it is shown how the quality of the sub-optimal solution can be improved through a procedure for the removal of sampled constraints a-posteriori, at the price of increased online computation efforts. Finally, this randomized approach can be combined with further constraint tightening, in order to guarantee recursive feasibility for the closed loop system.</description><subject>Cost function</subject><subject>Optimal control</subject><subject>Predictive control</subject><subject>Probabilistic logic</subject><subject>Stochastic processes</subject><subject>Vectors</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>9781457710957</isbn><isbn>1457710951</isbn><isbn>9781467321020</isbn><isbn>9781457710940</isbn><isbn>1467321028</isbn><isbn>1457710943</isbn><isbn>9781457710964</isbn><isbn>145771096X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUEtLxDAYjC-wrnsXvPQPtObLu8dSfMGKInpe0uQrRtpGmiKsv96KncvADDMMQ8gV0BKAVjd105SMAisVBwmCHZFtpQ0IpTkDyugxyRjXppBGwcnqSa2XqNSnJKNa8AIUVOfkIqVPSqGqFM1I_WpHH4fwgz5_ih77_GVCH9wcvjFv4jhPsc-7OOVpju7Dpjm4vA8j2kU5pBmHdEnOOtsn3K68Ie93t2_NQ7F7vn9s6l0RQMu5MNqxZfYfwDuKCoxF6IRSLbXeoJCtFAI1tNS1iletEk6h8NIaDgYM35Dr_96AiPuvKQx2OuzXN_gvBRxN1g</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Schildbach, G.</creator><creator>Calafiore, G. C.</creator><creator>Fagiano, L.</creator><creator>Morari, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201206</creationdate><title>Randomized Model Predictive Control for stochastic linear systems</title><author>Schildbach, G. ; Calafiore, G. C. ; Fagiano, L. ; Morari, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-87c214222221dc0e618ae1f466b0ad8e45b544e71b0cb639b64c6e4d5a8318183</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cost function</topic><topic>Optimal control</topic><topic>Predictive control</topic><topic>Probabilistic logic</topic><topic>Stochastic processes</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Schildbach, G.</creatorcontrib><creatorcontrib>Calafiore, G. C.</creatorcontrib><creatorcontrib>Fagiano, L.</creatorcontrib><creatorcontrib>Morari, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schildbach, G.</au><au>Calafiore, G. C.</au><au>Fagiano, L.</au><au>Morari, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Randomized Model Predictive Control for stochastic linear systems</atitle><btitle>2012 American Control Conference (ACC)</btitle><stitle>ACC</stitle><date>2012-06</date><risdate>2012</risdate><spage>417</spage><epage>422</epage><pages>417-422</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>9781457710957</isbn><isbn>1457710951</isbn><eisbn>9781467321020</eisbn><eisbn>9781457710940</eisbn><eisbn>1467321028</eisbn><eisbn>1457710943</eisbn><eisbn>9781457710964</eisbn><eisbn>145771096X</eisbn><abstract>This paper is concerned with the design of state-feedback control laws for linear time invariant systems that are subject to stochastic additive disturbances, and probabilistic constraints on the states. The design is based on a stochastic Model Predictive Control (MPC) approach, for which a randomization technique is applied in order to find a suboptimal solution to the underlying, generally non-convex chance constrained program. The proposed method yields a linear or quadratic program to be solved online at each time step, whose complexity is the same as that of a nominal MPC problem, i.e. if no disturbances were present. Furthermore, it is shown how the quality of the sub-optimal solution can be improved through a procedure for the removal of sampled constraints a-posteriori, at the price of increased online computation efforts. Finally, this randomized approach can be combined with further constraint tightening, in order to guarantee recursive feasibility for the closed loop system.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2012.6315142</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0743-1619
ispartof 2012 American Control Conference (ACC), 2012, p.417-422
issn 0743-1619
2378-5861
language eng
recordid cdi_ieee_primary_6315142
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cost function
Optimal control
Predictive control
Probabilistic logic
Stochastic processes
Vectors
title Randomized Model Predictive Control for stochastic linear systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A02%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Randomized%20Model%20Predictive%20Control%20for%20stochastic%20linear%20systems&rft.btitle=2012%20American%20Control%20Conference%20(ACC)&rft.au=Schildbach,%20G.&rft.date=2012-06&rft.spage=417&rft.epage=422&rft.pages=417-422&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=9781457710957&rft.isbn_list=1457710951&rft_id=info:doi/10.1109/ACC.2012.6315142&rft_dat=%3Cieee_6IE%3E6315142%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467321020&rft.eisbn_list=9781457710940&rft.eisbn_list=1467321028&rft.eisbn_list=1457710943&rft.eisbn_list=9781457710964&rft.eisbn_list=145771096X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6315142&rfr_iscdi=true