PDE estimation techniques for advanced battery management systems - Part II: SOH identification

A critical enabling technology for electrified vehicles and renewable energy resources is battery energy storage. Advanced battery systems represent a promising technology for these applications, however their dynamics are governed by relatively complex electrochemical phenomena whose parameters deg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Moura, S. J., Chaturvedi, N. A., Krstic, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 571
container_issue
container_start_page 566
container_title
container_volume
creator Moura, S. J.
Chaturvedi, N. A.
Krstic, M.
description A critical enabling technology for electrified vehicles and renewable energy resources is battery energy storage. Advanced battery systems represent a promising technology for these applications, however their dynamics are governed by relatively complex electrochemical phenomena whose parameters degrade over time and vary across material design. Moreover, limited sensing and actuation exists to monitor and control the internal state of these systems. As such, battery management systems require advanced identification, estimation, and control algorithms. In this paper we examine state-of-health (SOH) estimation, framed as a parameter identification problem for parabolic PDEs and nonlinearly parameterized output functions. Specifically, we utilize the swapping identification method for unknown parameters in the diffusion partial differential equation (PDE). A nonlinear least squares method is applied to the output function to identify its unknown parameters. These identification algorithms are synthesized from the single particle model (SPM). In a companion paper we examine a new battery state-of-charge (SOC) estimation algorithm based upon the backstepping method for PDEs.
doi_str_mv 10.1109/ACC.2012.6315020
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6315020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6315020</ieee_id><sourcerecordid>6315020</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a91ecdf80cbb05bec2571f74e11fc89eb6bd0ea93a4a5fa7ea145fa1e9e01a573</originalsourceid><addsrcrecordid>eNotkF9LwzAUxeM_cM69C77kC3TmNk3T-Da66QaDDdTncpveaMR22kSh396iezocDufA7zB2A2IOIMzdoiznqYB0nktQIhUnbGZ0AVmuZQqjP2WTVOoiUUUOZ8dMaT1WlT5nE6EzmUAO5pJdhfAuBBiTiwmr9ssVpxB9i9EfOh7JvnX-65sCd4eeY_ODnaWG1xgj9QNvscNXaqmLPAwhUht4wvfYR77Z3POn3Zr7Zgy98_Zv8JpdOPwINDvqlL08rJ7LdbLdPW7KxTbxoFVM0ADZxhXC1rVQNdlUaXA6IwBnC0N1XjeC0EjMUDnUhCOdQyBDAlBpOWW3_7ueiKrPfuTph-r4lfwFR2FZ3Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>PDE estimation techniques for advanced battery management systems - Part II: SOH identification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Moura, S. J. ; Chaturvedi, N. A. ; Krstic, M.</creator><creatorcontrib>Moura, S. J. ; Chaturvedi, N. A. ; Krstic, M.</creatorcontrib><description>A critical enabling technology for electrified vehicles and renewable energy resources is battery energy storage. Advanced battery systems represent a promising technology for these applications, however their dynamics are governed by relatively complex electrochemical phenomena whose parameters degrade over time and vary across material design. Moreover, limited sensing and actuation exists to monitor and control the internal state of these systems. As such, battery management systems require advanced identification, estimation, and control algorithms. In this paper we examine state-of-health (SOH) estimation, framed as a parameter identification problem for parabolic PDEs and nonlinearly parameterized output functions. Specifically, we utilize the swapping identification method for unknown parameters in the diffusion partial differential equation (PDE). A nonlinear least squares method is applied to the output function to identify its unknown parameters. These identification algorithms are synthesized from the single particle model (SPM). In a companion paper we examine a new battery state-of-charge (SOC) estimation algorithm based upon the backstepping method for PDEs.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 9781457710957</identifier><identifier>ISBN: 1457710951</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 9781467321020</identifier><identifier>EISBN: 9781457710940</identifier><identifier>EISBN: 1467321028</identifier><identifier>EISBN: 1457710943</identifier><identifier>EISBN: 9781457710964</identifier><identifier>EISBN: 145771096X</identifier><identifier>DOI: 10.1109/ACC.2012.6315020</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Batteries ; Estimation ; Mathematical model ; Partial discharges ; Radio frequency ; Signal processing algorithms</subject><ispartof>2012 American Control Conference (ACC), 2012, p.566-571</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6315020$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6315020$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Moura, S. J.</creatorcontrib><creatorcontrib>Chaturvedi, N. A.</creatorcontrib><creatorcontrib>Krstic, M.</creatorcontrib><title>PDE estimation techniques for advanced battery management systems - Part II: SOH identification</title><title>2012 American Control Conference (ACC)</title><addtitle>ACC</addtitle><description>A critical enabling technology for electrified vehicles and renewable energy resources is battery energy storage. Advanced battery systems represent a promising technology for these applications, however their dynamics are governed by relatively complex electrochemical phenomena whose parameters degrade over time and vary across material design. Moreover, limited sensing and actuation exists to monitor and control the internal state of these systems. As such, battery management systems require advanced identification, estimation, and control algorithms. In this paper we examine state-of-health (SOH) estimation, framed as a parameter identification problem for parabolic PDEs and nonlinearly parameterized output functions. Specifically, we utilize the swapping identification method for unknown parameters in the diffusion partial differential equation (PDE). A nonlinear least squares method is applied to the output function to identify its unknown parameters. These identification algorithms are synthesized from the single particle model (SPM). In a companion paper we examine a new battery state-of-charge (SOC) estimation algorithm based upon the backstepping method for PDEs.</description><subject>Algorithm design and analysis</subject><subject>Batteries</subject><subject>Estimation</subject><subject>Mathematical model</subject><subject>Partial discharges</subject><subject>Radio frequency</subject><subject>Signal processing algorithms</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>9781457710957</isbn><isbn>1457710951</isbn><isbn>9781467321020</isbn><isbn>9781457710940</isbn><isbn>1467321028</isbn><isbn>1457710943</isbn><isbn>9781457710964</isbn><isbn>145771096X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkF9LwzAUxeM_cM69C77kC3TmNk3T-Da66QaDDdTncpveaMR22kSh396iezocDufA7zB2A2IOIMzdoiznqYB0nktQIhUnbGZ0AVmuZQqjP2WTVOoiUUUOZ8dMaT1WlT5nE6EzmUAO5pJdhfAuBBiTiwmr9ssVpxB9i9EfOh7JvnX-65sCd4eeY_ODnaWG1xgj9QNvscNXaqmLPAwhUht4wvfYR77Z3POn3Zr7Zgy98_Zv8JpdOPwINDvqlL08rJ7LdbLdPW7KxTbxoFVM0ADZxhXC1rVQNdlUaXA6IwBnC0N1XjeC0EjMUDnUhCOdQyBDAlBpOWW3_7ueiKrPfuTph-r4lfwFR2FZ3Q</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Moura, S. J.</creator><creator>Chaturvedi, N. A.</creator><creator>Krstic, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201206</creationdate><title>PDE estimation techniques for advanced battery management systems - Part II: SOH identification</title><author>Moura, S. J. ; Chaturvedi, N. A. ; Krstic, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a91ecdf80cbb05bec2571f74e11fc89eb6bd0ea93a4a5fa7ea145fa1e9e01a573</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithm design and analysis</topic><topic>Batteries</topic><topic>Estimation</topic><topic>Mathematical model</topic><topic>Partial discharges</topic><topic>Radio frequency</topic><topic>Signal processing algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Moura, S. J.</creatorcontrib><creatorcontrib>Chaturvedi, N. A.</creatorcontrib><creatorcontrib>Krstic, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Moura, S. J.</au><au>Chaturvedi, N. A.</au><au>Krstic, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>PDE estimation techniques for advanced battery management systems - Part II: SOH identification</atitle><btitle>2012 American Control Conference (ACC)</btitle><stitle>ACC</stitle><date>2012-06</date><risdate>2012</risdate><spage>566</spage><epage>571</epage><pages>566-571</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>9781457710957</isbn><isbn>1457710951</isbn><eisbn>9781467321020</eisbn><eisbn>9781457710940</eisbn><eisbn>1467321028</eisbn><eisbn>1457710943</eisbn><eisbn>9781457710964</eisbn><eisbn>145771096X</eisbn><abstract>A critical enabling technology for electrified vehicles and renewable energy resources is battery energy storage. Advanced battery systems represent a promising technology for these applications, however their dynamics are governed by relatively complex electrochemical phenomena whose parameters degrade over time and vary across material design. Moreover, limited sensing and actuation exists to monitor and control the internal state of these systems. As such, battery management systems require advanced identification, estimation, and control algorithms. In this paper we examine state-of-health (SOH) estimation, framed as a parameter identification problem for parabolic PDEs and nonlinearly parameterized output functions. Specifically, we utilize the swapping identification method for unknown parameters in the diffusion partial differential equation (PDE). A nonlinear least squares method is applied to the output function to identify its unknown parameters. These identification algorithms are synthesized from the single particle model (SPM). In a companion paper we examine a new battery state-of-charge (SOC) estimation algorithm based upon the backstepping method for PDEs.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2012.6315020</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0743-1619
ispartof 2012 American Control Conference (ACC), 2012, p.566-571
issn 0743-1619
2378-5861
language eng
recordid cdi_ieee_primary_6315020
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Batteries
Estimation
Mathematical model
Partial discharges
Radio frequency
Signal processing algorithms
title PDE estimation techniques for advanced battery management systems - Part II: SOH identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A16%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=PDE%20estimation%20techniques%20for%20advanced%20battery%20management%20systems%20-%20Part%20II:%20SOH%20identification&rft.btitle=2012%20American%20Control%20Conference%20(ACC)&rft.au=Moura,%20S.%20J.&rft.date=2012-06&rft.spage=566&rft.epage=571&rft.pages=566-571&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=9781457710957&rft.isbn_list=1457710951&rft_id=info:doi/10.1109/ACC.2012.6315020&rft_dat=%3Cieee_6IE%3E6315020%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467321020&rft.eisbn_list=9781457710940&rft.eisbn_list=1467321028&rft.eisbn_list=1457710943&rft.eisbn_list=9781457710964&rft.eisbn_list=145771096X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6315020&rfr_iscdi=true