Robust particle filters via sequential pairwise reparameterized Gibbs sampling
Sequential Monte Carlo ("particle filtering") methods provide a powerful set of tools for recursive optimal Bayesian filtering in state-space models. However, these methods are based on importance sampling, which is known to be non-robust in several key scenarios, and therefore standard pa...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Paninski, L. Rad, K. R. Vidne, M. |
description | Sequential Monte Carlo ("particle filtering") methods provide a powerful set of tools for recursive optimal Bayesian filtering in state-space models. However, these methods are based on importance sampling, which is known to be non-robust in several key scenarios, and therefore standard particle filtering methods can fail in these settings. We present a filtering method which solves the key forward recursion using a reparameterized Gibbs sampling method, thus sidestepping the need for importance sampling. In many cases the resulting filter is much more robust and efficient than standard importance-sampling particle filter implementations. We illustrate the method with an application to a nonlinear, non-Gaussian model from neuroscience. |
doi_str_mv | 10.1109/CISS.2012.6310772 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6310772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6310772</ieee_id><sourcerecordid>6310772</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1332-d909f6d98dedb3f10a9e38cb74ad959fccaeea2435a7ef6b216e692ef72f20293</originalsourceid><addsrcrecordid>eNo1kM9KxDAYxCMiqGsfQLzkBVrzp03yHaXourAouHpekuaLRNq1Jl1Fn96C61yGYX7MYQi55KzinMF1u9psKsG4qJTkTGtxRM55rbSUXJr6mBSgzX-G5pQUOb-xWYabmsEZeXh6d_s80dGmKXY90hD7CVOmn9HSjB973E3R9nMf01fMSBPOqB1whuIPerqMzmWa7TD2cfd6QU6C7TMWB1-Ql7vb5_a-XD8uV-3NuoxcSlF6YBCUB-PROxk4s4DSdE7X1kMDoessohW1bKzGoJzgChUIDFoEwQTIBbn6242IuB1THGz63h4ukL-ajFFL</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robust particle filters via sequential pairwise reparameterized Gibbs sampling</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Paninski, L. ; Rad, K. R. ; Vidne, M.</creator><creatorcontrib>Paninski, L. ; Rad, K. R. ; Vidne, M.</creatorcontrib><description>Sequential Monte Carlo ("particle filtering") methods provide a powerful set of tools for recursive optimal Bayesian filtering in state-space models. However, these methods are based on importance sampling, which is known to be non-robust in several key scenarios, and therefore standard particle filtering methods can fail in these settings. We present a filtering method which solves the key forward recursion using a reparameterized Gibbs sampling method, thus sidestepping the need for importance sampling. In many cases the resulting filter is much more robust and efficient than standard importance-sampling particle filter implementations. We illustrate the method with an application to a nonlinear, non-Gaussian model from neuroscience.</description><identifier>ISBN: 9781467331395</identifier><identifier>ISBN: 1467331392</identifier><identifier>EISBN: 1467331384</identifier><identifier>EISBN: 9781467331401</identifier><identifier>EISBN: 1467331406</identifier><identifier>EISBN: 9781467331388</identifier><identifier>DOI: 10.1109/CISS.2012.6310772</identifier><language>eng</language><publisher>IEEE</publisher><subject>Laplace equations ; Lead ; Neuroscience</subject><ispartof>2012 46th Annual Conference on Information Sciences and Systems (CISS), 2012, p.1-6</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6310772$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6310772$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Paninski, L.</creatorcontrib><creatorcontrib>Rad, K. R.</creatorcontrib><creatorcontrib>Vidne, M.</creatorcontrib><title>Robust particle filters via sequential pairwise reparameterized Gibbs sampling</title><title>2012 46th Annual Conference on Information Sciences and Systems (CISS)</title><addtitle>CISS</addtitle><description>Sequential Monte Carlo ("particle filtering") methods provide a powerful set of tools for recursive optimal Bayesian filtering in state-space models. However, these methods are based on importance sampling, which is known to be non-robust in several key scenarios, and therefore standard particle filtering methods can fail in these settings. We present a filtering method which solves the key forward recursion using a reparameterized Gibbs sampling method, thus sidestepping the need for importance sampling. In many cases the resulting filter is much more robust and efficient than standard importance-sampling particle filter implementations. We illustrate the method with an application to a nonlinear, non-Gaussian model from neuroscience.</description><subject>Laplace equations</subject><subject>Lead</subject><subject>Neuroscience</subject><isbn>9781467331395</isbn><isbn>1467331392</isbn><isbn>1467331384</isbn><isbn>9781467331401</isbn><isbn>1467331406</isbn><isbn>9781467331388</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kM9KxDAYxCMiqGsfQLzkBVrzp03yHaXourAouHpekuaLRNq1Jl1Fn96C61yGYX7MYQi55KzinMF1u9psKsG4qJTkTGtxRM55rbSUXJr6mBSgzX-G5pQUOb-xWYabmsEZeXh6d_s80dGmKXY90hD7CVOmn9HSjB973E3R9nMf01fMSBPOqB1whuIPerqMzmWa7TD2cfd6QU6C7TMWB1-Ql7vb5_a-XD8uV-3NuoxcSlF6YBCUB-PROxk4s4DSdE7X1kMDoessohW1bKzGoJzgChUIDFoEwQTIBbn6242IuB1THGz63h4ukL-ajFFL</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Paninski, L.</creator><creator>Rad, K. R.</creator><creator>Vidne, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201203</creationdate><title>Robust particle filters via sequential pairwise reparameterized Gibbs sampling</title><author>Paninski, L. ; Rad, K. R. ; Vidne, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1332-d909f6d98dedb3f10a9e38cb74ad959fccaeea2435a7ef6b216e692ef72f20293</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Laplace equations</topic><topic>Lead</topic><topic>Neuroscience</topic><toplevel>online_resources</toplevel><creatorcontrib>Paninski, L.</creatorcontrib><creatorcontrib>Rad, K. R.</creatorcontrib><creatorcontrib>Vidne, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Paninski, L.</au><au>Rad, K. R.</au><au>Vidne, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust particle filters via sequential pairwise reparameterized Gibbs sampling</atitle><btitle>2012 46th Annual Conference on Information Sciences and Systems (CISS)</btitle><stitle>CISS</stitle><date>2012-03</date><risdate>2012</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>9781467331395</isbn><isbn>1467331392</isbn><eisbn>1467331384</eisbn><eisbn>9781467331401</eisbn><eisbn>1467331406</eisbn><eisbn>9781467331388</eisbn><abstract>Sequential Monte Carlo ("particle filtering") methods provide a powerful set of tools for recursive optimal Bayesian filtering in state-space models. However, these methods are based on importance sampling, which is known to be non-robust in several key scenarios, and therefore standard particle filtering methods can fail in these settings. We present a filtering method which solves the key forward recursion using a reparameterized Gibbs sampling method, thus sidestepping the need for importance sampling. In many cases the resulting filter is much more robust and efficient than standard importance-sampling particle filter implementations. We illustrate the method with an application to a nonlinear, non-Gaussian model from neuroscience.</abstract><pub>IEEE</pub><doi>10.1109/CISS.2012.6310772</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467331395 |
ispartof | 2012 46th Annual Conference on Information Sciences and Systems (CISS), 2012, p.1-6 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6310772 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Laplace equations Lead Neuroscience |
title | Robust particle filters via sequential pairwise reparameterized Gibbs sampling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A26%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20particle%20filters%20via%20sequential%20pairwise%20reparameterized%20Gibbs%20sampling&rft.btitle=2012%2046th%20Annual%20Conference%20on%20Information%20Sciences%20and%20Systems%20(CISS)&rft.au=Paninski,%20L.&rft.date=2012-03&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=9781467331395&rft.isbn_list=1467331392&rft_id=info:doi/10.1109/CISS.2012.6310772&rft_dat=%3Cieee_6IE%3E6310772%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467331384&rft.eisbn_list=9781467331401&rft.eisbn_list=1467331406&rft.eisbn_list=9781467331388&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6310772&rfr_iscdi=true |