Cepstral-domain HMM-based speech enhancement using vector Taylor series and parallel model combination

Speech enhancement problem using hidden Markov model (HMM) and minimum mean square error (MMSE) in cepstral domain is studied. This noise reduction approach can be considered as weighted-sum filtering of the noisy speech signal in which the filters weights are estimated using the HMM of noisy speech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Veisi, H., Sameti, H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Speech enhancement problem using hidden Markov model (HMM) and minimum mean square error (MMSE) in cepstral domain is studied. This noise reduction approach can be considered as weighted-sum filtering of the noisy speech signal in which the filters weights are estimated using the HMM of noisy speech. To have an accurate estimation of the noisy speech HMM, vector Taylor series (VTS) is proposed and compared with the parallel model combination (PMC) technique. Furthermore, proposed cepstral-domain HMM-based speech enhancement systems are compared with the renowned autoregressive HMM (AR-HMM) approach. The evaluation results confirm the superiority of the cepstral domain approach in comparison with AR-HMM and indicate that VTS-based method provides higher noise reduction rate than the PMC-based method.
DOI:10.1109/ISSPA.2012.6310563