Solar cells performance testing and modeling based on particle swarm algorithm
Existing solar cells performance testing and modeling algorithms possess several drawbacks such as high complexity, low measuring accuracies and poor robustness to the small change of operating condition. A new approach is proposed to solve these problems. Firstly, the method introduced a series of...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 566 |
---|---|
container_issue | |
container_start_page | 562 |
container_title | |
container_volume | |
creator | Jiang Cong Xue Lingyun Song Deyun Wang Jian |
description | Existing solar cells performance testing and modeling algorithms possess several drawbacks such as high complexity, low measuring accuracies and poor robustness to the small change of operating condition. A new approach is proposed to solve these problems. Firstly, the method introduced a series of semiempirical formula to separate and quantify the influence of all significant factors. Secondly, a chaos particle swarm optimization algorithm (CPSO) was used for extracting model parameters, in which the global search performance and local convergence of particle swarm optimization (PSO) were improved by the proposed chaotic search strategy. The application results of solar cells I-V characteristics test and measurement system demonstrate that the measured data and the calculated data, where the performance model parameters derived from the approach have been employed, represent conformity excellently. |
doi_str_mv | 10.1109/CSIP.2012.6308916 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6308916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6308916</ieee_id><sourcerecordid>6308916</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1937a2dcf5254796d3741b3dbfa5040eefa3c877f4e71fb4880b90b88c8bedfa3</originalsourceid><addsrcrecordid>eNpFj9tKAzEYhCMiqLUPIN7kBXbNaTfJpSweCkWF9r7k8KdGsgeSBfHtXbHg3AzDB8MMQreU1JQSfd_tNu81I5TVLSdK0_YMXVPRSk7Fws__A2GXaF3KJ1mkqNQtu0KvuzGZjB2kVPAEOYy5N4MDPEOZ43DEZvC4Hz2k32BNAY_HAU8mz9ElwOXL5B6bdBxznD_6G3QRTCqwPvkK7Z8e991LtX173nQP2ypqMldUc2mYd6FhjVh2eC4FtdzbYBoiCEAw3CkpgwBJgxVKEauJVcopC36BK3T3VxsB4DDl2Jv8fTjd5z_rf0-T</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Solar cells performance testing and modeling based on particle swarm algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jiang Cong ; Xue Lingyun ; Song Deyun ; Wang Jian</creator><creatorcontrib>Jiang Cong ; Xue Lingyun ; Song Deyun ; Wang Jian</creatorcontrib><description>Existing solar cells performance testing and modeling algorithms possess several drawbacks such as high complexity, low measuring accuracies and poor robustness to the small change of operating condition. A new approach is proposed to solve these problems. Firstly, the method introduced a series of semiempirical formula to separate and quantify the influence of all significant factors. Secondly, a chaos particle swarm optimization algorithm (CPSO) was used for extracting model parameters, in which the global search performance and local convergence of particle swarm optimization (PSO) were improved by the proposed chaotic search strategy. The application results of solar cells I-V characteristics test and measurement system demonstrate that the measured data and the calculated data, where the performance model parameters derived from the approach have been employed, represent conformity excellently.</description><identifier>ISBN: 1467314102</identifier><identifier>ISBN: 9781467314107</identifier><identifier>EISBN: 1467314110</identifier><identifier>EISBN: 1467314099</identifier><identifier>EISBN: 9781467314091</identifier><identifier>EISBN: 9781467314114</identifier><identifier>DOI: 10.1109/CSIP.2012.6308916</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chaotic search ; Data models ; parameter estimation and optimization ; Particle swarm optimization ; solar cells performance model</subject><ispartof>2012 International Conference on Computer Science and Information Processing (CSIP), 2012, p.562-566</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6308916$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6308916$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jiang Cong</creatorcontrib><creatorcontrib>Xue Lingyun</creatorcontrib><creatorcontrib>Song Deyun</creatorcontrib><creatorcontrib>Wang Jian</creatorcontrib><title>Solar cells performance testing and modeling based on particle swarm algorithm</title><title>2012 International Conference on Computer Science and Information Processing (CSIP)</title><addtitle>CSIP</addtitle><description>Existing solar cells performance testing and modeling algorithms possess several drawbacks such as high complexity, low measuring accuracies and poor robustness to the small change of operating condition. A new approach is proposed to solve these problems. Firstly, the method introduced a series of semiempirical formula to separate and quantify the influence of all significant factors. Secondly, a chaos particle swarm optimization algorithm (CPSO) was used for extracting model parameters, in which the global search performance and local convergence of particle swarm optimization (PSO) were improved by the proposed chaotic search strategy. The application results of solar cells I-V characteristics test and measurement system demonstrate that the measured data and the calculated data, where the performance model parameters derived from the approach have been employed, represent conformity excellently.</description><subject>Chaotic search</subject><subject>Data models</subject><subject>parameter estimation and optimization</subject><subject>Particle swarm optimization</subject><subject>solar cells performance model</subject><isbn>1467314102</isbn><isbn>9781467314107</isbn><isbn>1467314110</isbn><isbn>1467314099</isbn><isbn>9781467314091</isbn><isbn>9781467314114</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj9tKAzEYhCMiqLUPIN7kBXbNaTfJpSweCkWF9r7k8KdGsgeSBfHtXbHg3AzDB8MMQreU1JQSfd_tNu81I5TVLSdK0_YMXVPRSk7Fws__A2GXaF3KJ1mkqNQtu0KvuzGZjB2kVPAEOYy5N4MDPEOZ43DEZvC4Hz2k32BNAY_HAU8mz9ElwOXL5B6bdBxznD_6G3QRTCqwPvkK7Z8e991LtX173nQP2ypqMldUc2mYd6FhjVh2eC4FtdzbYBoiCEAw3CkpgwBJgxVKEauJVcopC36BK3T3VxsB4DDl2Jv8fTjd5z_rf0-T</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Jiang Cong</creator><creator>Xue Lingyun</creator><creator>Song Deyun</creator><creator>Wang Jian</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201208</creationdate><title>Solar cells performance testing and modeling based on particle swarm algorithm</title><author>Jiang Cong ; Xue Lingyun ; Song Deyun ; Wang Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1937a2dcf5254796d3741b3dbfa5040eefa3c877f4e71fb4880b90b88c8bedfa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chaotic search</topic><topic>Data models</topic><topic>parameter estimation and optimization</topic><topic>Particle swarm optimization</topic><topic>solar cells performance model</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiang Cong</creatorcontrib><creatorcontrib>Xue Lingyun</creatorcontrib><creatorcontrib>Song Deyun</creatorcontrib><creatorcontrib>Wang Jian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiang Cong</au><au>Xue Lingyun</au><au>Song Deyun</au><au>Wang Jian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Solar cells performance testing and modeling based on particle swarm algorithm</atitle><btitle>2012 International Conference on Computer Science and Information Processing (CSIP)</btitle><stitle>CSIP</stitle><date>2012-08</date><risdate>2012</risdate><spage>562</spage><epage>566</epage><pages>562-566</pages><isbn>1467314102</isbn><isbn>9781467314107</isbn><eisbn>1467314110</eisbn><eisbn>1467314099</eisbn><eisbn>9781467314091</eisbn><eisbn>9781467314114</eisbn><abstract>Existing solar cells performance testing and modeling algorithms possess several drawbacks such as high complexity, low measuring accuracies and poor robustness to the small change of operating condition. A new approach is proposed to solve these problems. Firstly, the method introduced a series of semiempirical formula to separate and quantify the influence of all significant factors. Secondly, a chaos particle swarm optimization algorithm (CPSO) was used for extracting model parameters, in which the global search performance and local convergence of particle swarm optimization (PSO) were improved by the proposed chaotic search strategy. The application results of solar cells I-V characteristics test and measurement system demonstrate that the measured data and the calculated data, where the performance model parameters derived from the approach have been employed, represent conformity excellently.</abstract><pub>IEEE</pub><doi>10.1109/CSIP.2012.6308916</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1467314102 |
ispartof | 2012 International Conference on Computer Science and Information Processing (CSIP), 2012, p.562-566 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6308916 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Chaotic search Data models parameter estimation and optimization Particle swarm optimization solar cells performance model |
title | Solar cells performance testing and modeling based on particle swarm algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A22%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Solar%20cells%20performance%20testing%20and%20modeling%20based%20on%20particle%20swarm%20algorithm&rft.btitle=2012%20International%20Conference%20on%20Computer%20Science%20and%20Information%20Processing%20(CSIP)&rft.au=Jiang%20Cong&rft.date=2012-08&rft.spage=562&rft.epage=566&rft.pages=562-566&rft.isbn=1467314102&rft.isbn_list=9781467314107&rft_id=info:doi/10.1109/CSIP.2012.6308916&rft_dat=%3Cieee_6IE%3E6308916%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467314110&rft.eisbn_list=1467314099&rft.eisbn_list=9781467314091&rft.eisbn_list=9781467314114&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6308916&rfr_iscdi=true |