Solar cells performance testing and modeling based on particle swarm algorithm

Existing solar cells performance testing and modeling algorithms possess several drawbacks such as high complexity, low measuring accuracies and poor robustness to the small change of operating condition. A new approach is proposed to solve these problems. Firstly, the method introduced a series of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jiang Cong, Xue Lingyun, Song Deyun, Wang Jian
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 566
container_issue
container_start_page 562
container_title
container_volume
creator Jiang Cong
Xue Lingyun
Song Deyun
Wang Jian
description Existing solar cells performance testing and modeling algorithms possess several drawbacks such as high complexity, low measuring accuracies and poor robustness to the small change of operating condition. A new approach is proposed to solve these problems. Firstly, the method introduced a series of semiempirical formula to separate and quantify the influence of all significant factors. Secondly, a chaos particle swarm optimization algorithm (CPSO) was used for extracting model parameters, in which the global search performance and local convergence of particle swarm optimization (PSO) were improved by the proposed chaotic search strategy. The application results of solar cells I-V characteristics test and measurement system demonstrate that the measured data and the calculated data, where the performance model parameters derived from the approach have been employed, represent conformity excellently.
doi_str_mv 10.1109/CSIP.2012.6308916
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6308916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6308916</ieee_id><sourcerecordid>6308916</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1937a2dcf5254796d3741b3dbfa5040eefa3c877f4e71fb4880b90b88c8bedfa3</originalsourceid><addsrcrecordid>eNpFj9tKAzEYhCMiqLUPIN7kBXbNaTfJpSweCkWF9r7k8KdGsgeSBfHtXbHg3AzDB8MMQreU1JQSfd_tNu81I5TVLSdK0_YMXVPRSk7Fws__A2GXaF3KJ1mkqNQtu0KvuzGZjB2kVPAEOYy5N4MDPEOZ43DEZvC4Hz2k32BNAY_HAU8mz9ElwOXL5B6bdBxznD_6G3QRTCqwPvkK7Z8e991LtX173nQP2ypqMldUc2mYd6FhjVh2eC4FtdzbYBoiCEAw3CkpgwBJgxVKEauJVcopC36BK3T3VxsB4DDl2Jv8fTjd5z_rf0-T</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Solar cells performance testing and modeling based on particle swarm algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jiang Cong ; Xue Lingyun ; Song Deyun ; Wang Jian</creator><creatorcontrib>Jiang Cong ; Xue Lingyun ; Song Deyun ; Wang Jian</creatorcontrib><description>Existing solar cells performance testing and modeling algorithms possess several drawbacks such as high complexity, low measuring accuracies and poor robustness to the small change of operating condition. A new approach is proposed to solve these problems. Firstly, the method introduced a series of semiempirical formula to separate and quantify the influence of all significant factors. Secondly, a chaos particle swarm optimization algorithm (CPSO) was used for extracting model parameters, in which the global search performance and local convergence of particle swarm optimization (PSO) were improved by the proposed chaotic search strategy. The application results of solar cells I-V characteristics test and measurement system demonstrate that the measured data and the calculated data, where the performance model parameters derived from the approach have been employed, represent conformity excellently.</description><identifier>ISBN: 1467314102</identifier><identifier>ISBN: 9781467314107</identifier><identifier>EISBN: 1467314110</identifier><identifier>EISBN: 1467314099</identifier><identifier>EISBN: 9781467314091</identifier><identifier>EISBN: 9781467314114</identifier><identifier>DOI: 10.1109/CSIP.2012.6308916</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chaotic search ; Data models ; parameter estimation and optimization ; Particle swarm optimization ; solar cells performance model</subject><ispartof>2012 International Conference on Computer Science and Information Processing (CSIP), 2012, p.562-566</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6308916$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6308916$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jiang Cong</creatorcontrib><creatorcontrib>Xue Lingyun</creatorcontrib><creatorcontrib>Song Deyun</creatorcontrib><creatorcontrib>Wang Jian</creatorcontrib><title>Solar cells performance testing and modeling based on particle swarm algorithm</title><title>2012 International Conference on Computer Science and Information Processing (CSIP)</title><addtitle>CSIP</addtitle><description>Existing solar cells performance testing and modeling algorithms possess several drawbacks such as high complexity, low measuring accuracies and poor robustness to the small change of operating condition. A new approach is proposed to solve these problems. Firstly, the method introduced a series of semiempirical formula to separate and quantify the influence of all significant factors. Secondly, a chaos particle swarm optimization algorithm (CPSO) was used for extracting model parameters, in which the global search performance and local convergence of particle swarm optimization (PSO) were improved by the proposed chaotic search strategy. The application results of solar cells I-V characteristics test and measurement system demonstrate that the measured data and the calculated data, where the performance model parameters derived from the approach have been employed, represent conformity excellently.</description><subject>Chaotic search</subject><subject>Data models</subject><subject>parameter estimation and optimization</subject><subject>Particle swarm optimization</subject><subject>solar cells performance model</subject><isbn>1467314102</isbn><isbn>9781467314107</isbn><isbn>1467314110</isbn><isbn>1467314099</isbn><isbn>9781467314091</isbn><isbn>9781467314114</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj9tKAzEYhCMiqLUPIN7kBXbNaTfJpSweCkWF9r7k8KdGsgeSBfHtXbHg3AzDB8MMQreU1JQSfd_tNu81I5TVLSdK0_YMXVPRSk7Fws__A2GXaF3KJ1mkqNQtu0KvuzGZjB2kVPAEOYy5N4MDPEOZ43DEZvC4Hz2k32BNAY_HAU8mz9ElwOXL5B6bdBxznD_6G3QRTCqwPvkK7Z8e991LtX173nQP2ypqMldUc2mYd6FhjVh2eC4FtdzbYBoiCEAw3CkpgwBJgxVKEauJVcopC36BK3T3VxsB4DDl2Jv8fTjd5z_rf0-T</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Jiang Cong</creator><creator>Xue Lingyun</creator><creator>Song Deyun</creator><creator>Wang Jian</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201208</creationdate><title>Solar cells performance testing and modeling based on particle swarm algorithm</title><author>Jiang Cong ; Xue Lingyun ; Song Deyun ; Wang Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1937a2dcf5254796d3741b3dbfa5040eefa3c877f4e71fb4880b90b88c8bedfa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chaotic search</topic><topic>Data models</topic><topic>parameter estimation and optimization</topic><topic>Particle swarm optimization</topic><topic>solar cells performance model</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiang Cong</creatorcontrib><creatorcontrib>Xue Lingyun</creatorcontrib><creatorcontrib>Song Deyun</creatorcontrib><creatorcontrib>Wang Jian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiang Cong</au><au>Xue Lingyun</au><au>Song Deyun</au><au>Wang Jian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Solar cells performance testing and modeling based on particle swarm algorithm</atitle><btitle>2012 International Conference on Computer Science and Information Processing (CSIP)</btitle><stitle>CSIP</stitle><date>2012-08</date><risdate>2012</risdate><spage>562</spage><epage>566</epage><pages>562-566</pages><isbn>1467314102</isbn><isbn>9781467314107</isbn><eisbn>1467314110</eisbn><eisbn>1467314099</eisbn><eisbn>9781467314091</eisbn><eisbn>9781467314114</eisbn><abstract>Existing solar cells performance testing and modeling algorithms possess several drawbacks such as high complexity, low measuring accuracies and poor robustness to the small change of operating condition. A new approach is proposed to solve these problems. Firstly, the method introduced a series of semiempirical formula to separate and quantify the influence of all significant factors. Secondly, a chaos particle swarm optimization algorithm (CPSO) was used for extracting model parameters, in which the global search performance and local convergence of particle swarm optimization (PSO) were improved by the proposed chaotic search strategy. The application results of solar cells I-V characteristics test and measurement system demonstrate that the measured data and the calculated data, where the performance model parameters derived from the approach have been employed, represent conformity excellently.</abstract><pub>IEEE</pub><doi>10.1109/CSIP.2012.6308916</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467314102
ispartof 2012 International Conference on Computer Science and Information Processing (CSIP), 2012, p.562-566
issn
language eng
recordid cdi_ieee_primary_6308916
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Chaotic search
Data models
parameter estimation and optimization
Particle swarm optimization
solar cells performance model
title Solar cells performance testing and modeling based on particle swarm algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A22%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Solar%20cells%20performance%20testing%20and%20modeling%20based%20on%20particle%20swarm%20algorithm&rft.btitle=2012%20International%20Conference%20on%20Computer%20Science%20and%20Information%20Processing%20(CSIP)&rft.au=Jiang%20Cong&rft.date=2012-08&rft.spage=562&rft.epage=566&rft.pages=562-566&rft.isbn=1467314102&rft.isbn_list=9781467314107&rft_id=info:doi/10.1109/CSIP.2012.6308916&rft_dat=%3Cieee_6IE%3E6308916%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467314110&rft.eisbn_list=1467314099&rft.eisbn_list=9781467314091&rft.eisbn_list=9781467314114&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6308916&rfr_iscdi=true