Observer-based nonlinear control of depth positioning of a spherical underwater robotic vehicle
The analysis and design of observer-based nonlinear control of depth positioning of a spherical underwater robotic vehicle (URV) is investigated. The observer is required for estimating accurately the unknown state variables in the full-state feedback control laws developed, whereby these control la...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 525 |
---|---|
container_issue | |
container_start_page | 519 |
container_title | |
container_volume | 2 |
creator | Loh, R. N. K. Karsiti, M. N. |
description | The analysis and design of observer-based nonlinear control of depth positioning of a spherical underwater robotic vehicle (URV) is investigated. The observer is required for estimating accurately the unknown state variables in the full-state feedback control laws developed, whereby these control laws can be implemented with the unknown states replaced by their observer estimates. The input-output feedback linearization approach and design techniques are employed. Three approximation schemes for smoothing the signum function in the URV model are developed; these smoothing schemes are required for deriving the linearizing feedback control laws and the related results. Simulation results show that the introduction of observer-based nonlinear control would provide a robust method to stabilize and control the depth position of the URV. |
doi_str_mv | 10.1109/ICIAS.2012.6306070 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6306070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6306070</ieee_id><sourcerecordid>6306070</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-9281c53329d5aa56e532f44da67db14f2113e7fbc411398f03bc4952608ec0133</originalsourceid><addsrcrecordid>eNo1kLFOwzAYhI0QElDyArD4BVL824ljj1UFNFKlDnSPHOcPMQp2ZIci3p4gyi333Q03HCH3wNYATD_W23rzuuYM-FoKJlnFLkimKwVFWVWgpWSX5PY_KLgmWUrvbJECVYC6Ic2hTRhPGPPWJOyoD350Hk2kNvg5hpGGnnY4zQOdQnKzC975t9_S0DQNGJ01I_30HcYvM2OkMbRhdpaecHB2xDty1ZsxYXb2FTk-Px23u3x_eKm3m33uNJtzzRXYUgiuu9KYUmIpeF8UnZFV10LRcwCBVd_aYgGteiYW1CWXTKFlIMSKPPzNOkRspug-TPxuzpeIH3b7VeE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Observer-based nonlinear control of depth positioning of a spherical underwater robotic vehicle</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Loh, R. N. K. ; Karsiti, M. N.</creator><creatorcontrib>Loh, R. N. K. ; Karsiti, M. N.</creatorcontrib><description>The analysis and design of observer-based nonlinear control of depth positioning of a spherical underwater robotic vehicle (URV) is investigated. The observer is required for estimating accurately the unknown state variables in the full-state feedback control laws developed, whereby these control laws can be implemented with the unknown states replaced by their observer estimates. The input-output feedback linearization approach and design techniques are employed. Three approximation schemes for smoothing the signum function in the URV model are developed; these smoothing schemes are required for deriving the linearizing feedback control laws and the related results. Simulation results show that the introduction of observer-based nonlinear control would provide a robust method to stabilize and control the depth position of the URV.</description><identifier>ISBN: 1457719681</identifier><identifier>ISBN: 9781457719684</identifier><identifier>EISBN: 9781457719660</identifier><identifier>EISBN: 1457719673</identifier><identifier>EISBN: 1457719665</identifier><identifier>EISBN: 9781457719677</identifier><identifier>DOI: 10.1109/ICIAS.2012.6306070</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Artificial intelligence ; Electronic ballasts ; Feedback control ; feedback linearization ; Force ; observer-based nonlinear control systems ; Observers ; Smoothing methods ; spherical URV ; variable ballast</subject><ispartof>2012 4th International Conference on Intelligent and Advanced Systems (ICIAS2012), 2012, Vol.2, p.519-525</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6306070$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6306070$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Loh, R. N. K.</creatorcontrib><creatorcontrib>Karsiti, M. N.</creatorcontrib><title>Observer-based nonlinear control of depth positioning of a spherical underwater robotic vehicle</title><title>2012 4th International Conference on Intelligent and Advanced Systems (ICIAS2012)</title><addtitle>ICIAS</addtitle><description>The analysis and design of observer-based nonlinear control of depth positioning of a spherical underwater robotic vehicle (URV) is investigated. The observer is required for estimating accurately the unknown state variables in the full-state feedback control laws developed, whereby these control laws can be implemented with the unknown states replaced by their observer estimates. The input-output feedback linearization approach and design techniques are employed. Three approximation schemes for smoothing the signum function in the URV model are developed; these smoothing schemes are required for deriving the linearizing feedback control laws and the related results. Simulation results show that the introduction of observer-based nonlinear control would provide a robust method to stabilize and control the depth position of the URV.</description><subject>Approximation methods</subject><subject>Artificial intelligence</subject><subject>Electronic ballasts</subject><subject>Feedback control</subject><subject>feedback linearization</subject><subject>Force</subject><subject>observer-based nonlinear control systems</subject><subject>Observers</subject><subject>Smoothing methods</subject><subject>spherical URV</subject><subject>variable ballast</subject><isbn>1457719681</isbn><isbn>9781457719684</isbn><isbn>9781457719660</isbn><isbn>1457719673</isbn><isbn>1457719665</isbn><isbn>9781457719677</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kLFOwzAYhI0QElDyArD4BVL824ljj1UFNFKlDnSPHOcPMQp2ZIci3p4gyi333Q03HCH3wNYATD_W23rzuuYM-FoKJlnFLkimKwVFWVWgpWSX5PY_KLgmWUrvbJECVYC6Ic2hTRhPGPPWJOyoD350Hk2kNvg5hpGGnnY4zQOdQnKzC975t9_S0DQNGJ01I_30HcYvM2OkMbRhdpaecHB2xDty1ZsxYXb2FTk-Px23u3x_eKm3m33uNJtzzRXYUgiuu9KYUmIpeF8UnZFV10LRcwCBVd_aYgGteiYW1CWXTKFlIMSKPPzNOkRspug-TPxuzpeIH3b7VeE</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Loh, R. N. K.</creator><creator>Karsiti, M. N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201206</creationdate><title>Observer-based nonlinear control of depth positioning of a spherical underwater robotic vehicle</title><author>Loh, R. N. K. ; Karsiti, M. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-9281c53329d5aa56e532f44da67db14f2113e7fbc411398f03bc4952608ec0133</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation methods</topic><topic>Artificial intelligence</topic><topic>Electronic ballasts</topic><topic>Feedback control</topic><topic>feedback linearization</topic><topic>Force</topic><topic>observer-based nonlinear control systems</topic><topic>Observers</topic><topic>Smoothing methods</topic><topic>spherical URV</topic><topic>variable ballast</topic><toplevel>online_resources</toplevel><creatorcontrib>Loh, R. N. K.</creatorcontrib><creatorcontrib>Karsiti, M. N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Loh, R. N. K.</au><au>Karsiti, M. N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Observer-based nonlinear control of depth positioning of a spherical underwater robotic vehicle</atitle><btitle>2012 4th International Conference on Intelligent and Advanced Systems (ICIAS2012)</btitle><stitle>ICIAS</stitle><date>2012-06</date><risdate>2012</risdate><volume>2</volume><spage>519</spage><epage>525</epage><pages>519-525</pages><isbn>1457719681</isbn><isbn>9781457719684</isbn><eisbn>9781457719660</eisbn><eisbn>1457719673</eisbn><eisbn>1457719665</eisbn><eisbn>9781457719677</eisbn><abstract>The analysis and design of observer-based nonlinear control of depth positioning of a spherical underwater robotic vehicle (URV) is investigated. The observer is required for estimating accurately the unknown state variables in the full-state feedback control laws developed, whereby these control laws can be implemented with the unknown states replaced by their observer estimates. The input-output feedback linearization approach and design techniques are employed. Three approximation schemes for smoothing the signum function in the URV model are developed; these smoothing schemes are required for deriving the linearizing feedback control laws and the related results. Simulation results show that the introduction of observer-based nonlinear control would provide a robust method to stabilize and control the depth position of the URV.</abstract><pub>IEEE</pub><doi>10.1109/ICIAS.2012.6306070</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1457719681 |
ispartof | 2012 4th International Conference on Intelligent and Advanced Systems (ICIAS2012), 2012, Vol.2, p.519-525 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6306070 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Approximation methods Artificial intelligence Electronic ballasts Feedback control feedback linearization Force observer-based nonlinear control systems Observers Smoothing methods spherical URV variable ballast |
title | Observer-based nonlinear control of depth positioning of a spherical underwater robotic vehicle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A03%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Observer-based%20nonlinear%20control%20of%20depth%20positioning%20of%20a%20spherical%20underwater%20robotic%20vehicle&rft.btitle=2012%204th%20International%20Conference%20on%20Intelligent%20and%20Advanced%20Systems%20(ICIAS2012)&rft.au=Loh,%20R.%20N.%20K.&rft.date=2012-06&rft.volume=2&rft.spage=519&rft.epage=525&rft.pages=519-525&rft.isbn=1457719681&rft.isbn_list=9781457719684&rft_id=info:doi/10.1109/ICIAS.2012.6306070&rft_dat=%3Cieee_6IE%3E6306070%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457719660&rft.eisbn_list=1457719673&rft.eisbn_list=1457719665&rft.eisbn_list=9781457719677&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6306070&rfr_iscdi=true |