Robust Multi-objective Optimization Based on NSGA-II for UCAV Weapon Delivery
The problem of generating robust optimal air-to-ground weapon delivery planning (WDP) for UCAVs is studied. In order to deal with the uncertainties in combat operation, such as disturbing in battlefield, model imprecise, operating errors and so on, a strategy based on robust multi-objective optimiza...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 283 |
---|---|
container_issue | |
container_start_page | 279 |
container_title | |
container_volume | 2 |
creator | Xueqiang Gu Yu Zhang Nan Wang Jing Chen |
description | The problem of generating robust optimal air-to-ground weapon delivery planning (WDP) for UCAVs is studied. In order to deal with the uncertainties in combat operation, such as disturbing in battlefield, model imprecise, operating errors and so on, a strategy based on robust multi-objective optimization (RMO) approach is proposed. In this paper, several constraints include flight capability constraint, weapon constraint and battlefield constraint, are considered. And some robust optimal cost functions are built, using Monte Carlo method simulating criteria of weapon delivery, and then the weapon delivery planning problem is transformed into a robust multi-objective optimization problem. In order to improve the convergence performance, a combining robust multi-objective optimization algorithm based on an improved NSGA-II and Monte Carlo simulation is designed, and then a tactical basic flight maneuver (BFM) is presented to generate weapon delivery trajectory. The proposed approach is demonstrated on a typical air-to-ground attack mission scenario. The simulated results show that the proposed approach is capable of generating the robust and optimal weapon delivery trajectories efficiently. |
doi_str_mv | 10.1109/IHMSC.2012.163 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6305777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6305777</ieee_id><sourcerecordid>6305777</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-ccb71bf401c31cca8daffb5c452a96ee76d1ed827608200509bb94fe7fa84d113</originalsourceid><addsrcrecordid>eNotjFFLwzAUhQMiKLOvvviSP9Cam7RJ-lirboXVgXP6OJL0BjI6W9pOmL9-BT0v5-PAdwi5B5YAsPyxWtXbMuEMeAJSXJEoVxpSqQTkjKsbEo3jgc3RoFMubkn93tnTONH61E4h7uwB3RR-kG76KRzDr5lC902fzIgNneFtuyziqqK-G-iuLD7pF5p-3p-xnaXhfEeuvWlHjP57QXavLx_lKl5vllVZrOMAKpti56wC61MGToBzRjfGe5u5NOMml4hKNoCN5koyzRnLWG5tnnpU3ui0ARAL8vD3GxBx3w_haIbzXgqWKaXEBc1vS80</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robust Multi-objective Optimization Based on NSGA-II for UCAV Weapon Delivery</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xueqiang Gu ; Yu Zhang ; Nan Wang ; Jing Chen</creator><creatorcontrib>Xueqiang Gu ; Yu Zhang ; Nan Wang ; Jing Chen</creatorcontrib><description>The problem of generating robust optimal air-to-ground weapon delivery planning (WDP) for UCAVs is studied. In order to deal with the uncertainties in combat operation, such as disturbing in battlefield, model imprecise, operating errors and so on, a strategy based on robust multi-objective optimization (RMO) approach is proposed. In this paper, several constraints include flight capability constraint, weapon constraint and battlefield constraint, are considered. And some robust optimal cost functions are built, using Monte Carlo method simulating criteria of weapon delivery, and then the weapon delivery planning problem is transformed into a robust multi-objective optimization problem. In order to improve the convergence performance, a combining robust multi-objective optimization algorithm based on an improved NSGA-II and Monte Carlo simulation is designed, and then a tactical basic flight maneuver (BFM) is presented to generate weapon delivery trajectory. The proposed approach is demonstrated on a typical air-to-ground attack mission scenario. The simulated results show that the proposed approach is capable of generating the robust and optimal weapon delivery trajectories efficiently.</description><identifier>ISBN: 9781467319027</identifier><identifier>ISBN: 1467319023</identifier><identifier>DOI: 10.1109/IHMSC.2012.163</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>basic flight maneuver ; Monte Carlo methods ; non-dominated sorting genetic algorithm ; Pareto optimization ; Planning ; robust multi-objective optimization ; Robustness ; Trajectory ; weapon delivery ; Weapons</subject><ispartof>2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, 2012, Vol.2, p.279-283</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6305777$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6305777$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xueqiang Gu</creatorcontrib><creatorcontrib>Yu Zhang</creatorcontrib><creatorcontrib>Nan Wang</creatorcontrib><creatorcontrib>Jing Chen</creatorcontrib><title>Robust Multi-objective Optimization Based on NSGA-II for UCAV Weapon Delivery</title><title>2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics</title><addtitle>ihmsc</addtitle><description>The problem of generating robust optimal air-to-ground weapon delivery planning (WDP) for UCAVs is studied. In order to deal with the uncertainties in combat operation, such as disturbing in battlefield, model imprecise, operating errors and so on, a strategy based on robust multi-objective optimization (RMO) approach is proposed. In this paper, several constraints include flight capability constraint, weapon constraint and battlefield constraint, are considered. And some robust optimal cost functions are built, using Monte Carlo method simulating criteria of weapon delivery, and then the weapon delivery planning problem is transformed into a robust multi-objective optimization problem. In order to improve the convergence performance, a combining robust multi-objective optimization algorithm based on an improved NSGA-II and Monte Carlo simulation is designed, and then a tactical basic flight maneuver (BFM) is presented to generate weapon delivery trajectory. The proposed approach is demonstrated on a typical air-to-ground attack mission scenario. The simulated results show that the proposed approach is capable of generating the robust and optimal weapon delivery trajectories efficiently.</description><subject>basic flight maneuver</subject><subject>Monte Carlo methods</subject><subject>non-dominated sorting genetic algorithm</subject><subject>Pareto optimization</subject><subject>Planning</subject><subject>robust multi-objective optimization</subject><subject>Robustness</subject><subject>Trajectory</subject><subject>weapon delivery</subject><subject>Weapons</subject><isbn>9781467319027</isbn><isbn>1467319023</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjFFLwzAUhQMiKLOvvviSP9Cam7RJ-lirboXVgXP6OJL0BjI6W9pOmL9-BT0v5-PAdwi5B5YAsPyxWtXbMuEMeAJSXJEoVxpSqQTkjKsbEo3jgc3RoFMubkn93tnTONH61E4h7uwB3RR-kG76KRzDr5lC902fzIgNneFtuyziqqK-G-iuLD7pF5p-3p-xnaXhfEeuvWlHjP57QXavLx_lKl5vllVZrOMAKpti56wC61MGToBzRjfGe5u5NOMml4hKNoCN5koyzRnLWG5tnnpU3ui0ARAL8vD3GxBx3w_haIbzXgqWKaXEBc1vS80</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Xueqiang Gu</creator><creator>Yu Zhang</creator><creator>Nan Wang</creator><creator>Jing Chen</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201208</creationdate><title>Robust Multi-objective Optimization Based on NSGA-II for UCAV Weapon Delivery</title><author>Xueqiang Gu ; Yu Zhang ; Nan Wang ; Jing Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-ccb71bf401c31cca8daffb5c452a96ee76d1ed827608200509bb94fe7fa84d113</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>basic flight maneuver</topic><topic>Monte Carlo methods</topic><topic>non-dominated sorting genetic algorithm</topic><topic>Pareto optimization</topic><topic>Planning</topic><topic>robust multi-objective optimization</topic><topic>Robustness</topic><topic>Trajectory</topic><topic>weapon delivery</topic><topic>Weapons</topic><toplevel>online_resources</toplevel><creatorcontrib>Xueqiang Gu</creatorcontrib><creatorcontrib>Yu Zhang</creatorcontrib><creatorcontrib>Nan Wang</creatorcontrib><creatorcontrib>Jing Chen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xueqiang Gu</au><au>Yu Zhang</au><au>Nan Wang</au><au>Jing Chen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust Multi-objective Optimization Based on NSGA-II for UCAV Weapon Delivery</atitle><btitle>2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics</btitle><stitle>ihmsc</stitle><date>2012-08</date><risdate>2012</risdate><volume>2</volume><spage>279</spage><epage>283</epage><pages>279-283</pages><isbn>9781467319027</isbn><isbn>1467319023</isbn><coden>IEEPAD</coden><abstract>The problem of generating robust optimal air-to-ground weapon delivery planning (WDP) for UCAVs is studied. In order to deal with the uncertainties in combat operation, such as disturbing in battlefield, model imprecise, operating errors and so on, a strategy based on robust multi-objective optimization (RMO) approach is proposed. In this paper, several constraints include flight capability constraint, weapon constraint and battlefield constraint, are considered. And some robust optimal cost functions are built, using Monte Carlo method simulating criteria of weapon delivery, and then the weapon delivery planning problem is transformed into a robust multi-objective optimization problem. In order to improve the convergence performance, a combining robust multi-objective optimization algorithm based on an improved NSGA-II and Monte Carlo simulation is designed, and then a tactical basic flight maneuver (BFM) is presented to generate weapon delivery trajectory. The proposed approach is demonstrated on a typical air-to-ground attack mission scenario. The simulated results show that the proposed approach is capable of generating the robust and optimal weapon delivery trajectories efficiently.</abstract><pub>IEEE</pub><doi>10.1109/IHMSC.2012.163</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467319027 |
ispartof | 2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, 2012, Vol.2, p.279-283 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6305777 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | basic flight maneuver Monte Carlo methods non-dominated sorting genetic algorithm Pareto optimization Planning robust multi-objective optimization Robustness Trajectory weapon delivery Weapons |
title | Robust Multi-objective Optimization Based on NSGA-II for UCAV Weapon Delivery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20Multi-objective%20Optimization%20Based%20on%20NSGA-II%20for%20UCAV%20Weapon%20Delivery&rft.btitle=2012%204th%20International%20Conference%20on%20Intelligent%20Human-Machine%20Systems%20and%20Cybernetics&rft.au=Xueqiang%20Gu&rft.date=2012-08&rft.volume=2&rft.spage=279&rft.epage=283&rft.pages=279-283&rft.isbn=9781467319027&rft.isbn_list=1467319023&rft.coden=IEEPAD&rft_id=info:doi/10.1109/IHMSC.2012.163&rft_dat=%3Cieee_6IE%3E6305777%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6305777&rfr_iscdi=true |