Robust Multi-objective Optimization Based on NSGA-II for UCAV Weapon Delivery

The problem of generating robust optimal air-to-ground weapon delivery planning (WDP) for UCAVs is studied. In order to deal with the uncertainties in combat operation, such as disturbing in battlefield, model imprecise, operating errors and so on, a strategy based on robust multi-objective optimiza...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xueqiang Gu, Yu Zhang, Nan Wang, Jing Chen
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 283
container_issue
container_start_page 279
container_title
container_volume 2
creator Xueqiang Gu
Yu Zhang
Nan Wang
Jing Chen
description The problem of generating robust optimal air-to-ground weapon delivery planning (WDP) for UCAVs is studied. In order to deal with the uncertainties in combat operation, such as disturbing in battlefield, model imprecise, operating errors and so on, a strategy based on robust multi-objective optimization (RMO) approach is proposed. In this paper, several constraints include flight capability constraint, weapon constraint and battlefield constraint, are considered. And some robust optimal cost functions are built, using Monte Carlo method simulating criteria of weapon delivery, and then the weapon delivery planning problem is transformed into a robust multi-objective optimization problem. In order to improve the convergence performance, a combining robust multi-objective optimization algorithm based on an improved NSGA-II and Monte Carlo simulation is designed, and then a tactical basic flight maneuver (BFM) is presented to generate weapon delivery trajectory. The proposed approach is demonstrated on a typical air-to-ground attack mission scenario. The simulated results show that the proposed approach is capable of generating the robust and optimal weapon delivery trajectories efficiently.
doi_str_mv 10.1109/IHMSC.2012.163
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6305777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6305777</ieee_id><sourcerecordid>6305777</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-ccb71bf401c31cca8daffb5c452a96ee76d1ed827608200509bb94fe7fa84d113</originalsourceid><addsrcrecordid>eNotjFFLwzAUhQMiKLOvvviSP9Cam7RJ-lirboXVgXP6OJL0BjI6W9pOmL9-BT0v5-PAdwi5B5YAsPyxWtXbMuEMeAJSXJEoVxpSqQTkjKsbEo3jgc3RoFMubkn93tnTONH61E4h7uwB3RR-kG76KRzDr5lC902fzIgNneFtuyziqqK-G-iuLD7pF5p-3p-xnaXhfEeuvWlHjP57QXavLx_lKl5vllVZrOMAKpti56wC61MGToBzRjfGe5u5NOMml4hKNoCN5koyzRnLWG5tnnpU3ui0ARAL8vD3GxBx3w_haIbzXgqWKaXEBc1vS80</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robust Multi-objective Optimization Based on NSGA-II for UCAV Weapon Delivery</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xueqiang Gu ; Yu Zhang ; Nan Wang ; Jing Chen</creator><creatorcontrib>Xueqiang Gu ; Yu Zhang ; Nan Wang ; Jing Chen</creatorcontrib><description>The problem of generating robust optimal air-to-ground weapon delivery planning (WDP) for UCAVs is studied. In order to deal with the uncertainties in combat operation, such as disturbing in battlefield, model imprecise, operating errors and so on, a strategy based on robust multi-objective optimization (RMO) approach is proposed. In this paper, several constraints include flight capability constraint, weapon constraint and battlefield constraint, are considered. And some robust optimal cost functions are built, using Monte Carlo method simulating criteria of weapon delivery, and then the weapon delivery planning problem is transformed into a robust multi-objective optimization problem. In order to improve the convergence performance, a combining robust multi-objective optimization algorithm based on an improved NSGA-II and Monte Carlo simulation is designed, and then a tactical basic flight maneuver (BFM) is presented to generate weapon delivery trajectory. The proposed approach is demonstrated on a typical air-to-ground attack mission scenario. The simulated results show that the proposed approach is capable of generating the robust and optimal weapon delivery trajectories efficiently.</description><identifier>ISBN: 9781467319027</identifier><identifier>ISBN: 1467319023</identifier><identifier>DOI: 10.1109/IHMSC.2012.163</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>basic flight maneuver ; Monte Carlo methods ; non-dominated sorting genetic algorithm ; Pareto optimization ; Planning ; robust multi-objective optimization ; Robustness ; Trajectory ; weapon delivery ; Weapons</subject><ispartof>2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, 2012, Vol.2, p.279-283</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6305777$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6305777$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xueqiang Gu</creatorcontrib><creatorcontrib>Yu Zhang</creatorcontrib><creatorcontrib>Nan Wang</creatorcontrib><creatorcontrib>Jing Chen</creatorcontrib><title>Robust Multi-objective Optimization Based on NSGA-II for UCAV Weapon Delivery</title><title>2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics</title><addtitle>ihmsc</addtitle><description>The problem of generating robust optimal air-to-ground weapon delivery planning (WDP) for UCAVs is studied. In order to deal with the uncertainties in combat operation, such as disturbing in battlefield, model imprecise, operating errors and so on, a strategy based on robust multi-objective optimization (RMO) approach is proposed. In this paper, several constraints include flight capability constraint, weapon constraint and battlefield constraint, are considered. And some robust optimal cost functions are built, using Monte Carlo method simulating criteria of weapon delivery, and then the weapon delivery planning problem is transformed into a robust multi-objective optimization problem. In order to improve the convergence performance, a combining robust multi-objective optimization algorithm based on an improved NSGA-II and Monte Carlo simulation is designed, and then a tactical basic flight maneuver (BFM) is presented to generate weapon delivery trajectory. The proposed approach is demonstrated on a typical air-to-ground attack mission scenario. The simulated results show that the proposed approach is capable of generating the robust and optimal weapon delivery trajectories efficiently.</description><subject>basic flight maneuver</subject><subject>Monte Carlo methods</subject><subject>non-dominated sorting genetic algorithm</subject><subject>Pareto optimization</subject><subject>Planning</subject><subject>robust multi-objective optimization</subject><subject>Robustness</subject><subject>Trajectory</subject><subject>weapon delivery</subject><subject>Weapons</subject><isbn>9781467319027</isbn><isbn>1467319023</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjFFLwzAUhQMiKLOvvviSP9Cam7RJ-lirboXVgXP6OJL0BjI6W9pOmL9-BT0v5-PAdwi5B5YAsPyxWtXbMuEMeAJSXJEoVxpSqQTkjKsbEo3jgc3RoFMubkn93tnTONH61E4h7uwB3RR-kG76KRzDr5lC902fzIgNneFtuyziqqK-G-iuLD7pF5p-3p-xnaXhfEeuvWlHjP57QXavLx_lKl5vllVZrOMAKpti56wC61MGToBzRjfGe5u5NOMml4hKNoCN5koyzRnLWG5tnnpU3ui0ARAL8vD3GxBx3w_haIbzXgqWKaXEBc1vS80</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Xueqiang Gu</creator><creator>Yu Zhang</creator><creator>Nan Wang</creator><creator>Jing Chen</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201208</creationdate><title>Robust Multi-objective Optimization Based on NSGA-II for UCAV Weapon Delivery</title><author>Xueqiang Gu ; Yu Zhang ; Nan Wang ; Jing Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-ccb71bf401c31cca8daffb5c452a96ee76d1ed827608200509bb94fe7fa84d113</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>basic flight maneuver</topic><topic>Monte Carlo methods</topic><topic>non-dominated sorting genetic algorithm</topic><topic>Pareto optimization</topic><topic>Planning</topic><topic>robust multi-objective optimization</topic><topic>Robustness</topic><topic>Trajectory</topic><topic>weapon delivery</topic><topic>Weapons</topic><toplevel>online_resources</toplevel><creatorcontrib>Xueqiang Gu</creatorcontrib><creatorcontrib>Yu Zhang</creatorcontrib><creatorcontrib>Nan Wang</creatorcontrib><creatorcontrib>Jing Chen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xueqiang Gu</au><au>Yu Zhang</au><au>Nan Wang</au><au>Jing Chen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust Multi-objective Optimization Based on NSGA-II for UCAV Weapon Delivery</atitle><btitle>2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics</btitle><stitle>ihmsc</stitle><date>2012-08</date><risdate>2012</risdate><volume>2</volume><spage>279</spage><epage>283</epage><pages>279-283</pages><isbn>9781467319027</isbn><isbn>1467319023</isbn><coden>IEEPAD</coden><abstract>The problem of generating robust optimal air-to-ground weapon delivery planning (WDP) for UCAVs is studied. In order to deal with the uncertainties in combat operation, such as disturbing in battlefield, model imprecise, operating errors and so on, a strategy based on robust multi-objective optimization (RMO) approach is proposed. In this paper, several constraints include flight capability constraint, weapon constraint and battlefield constraint, are considered. And some robust optimal cost functions are built, using Monte Carlo method simulating criteria of weapon delivery, and then the weapon delivery planning problem is transformed into a robust multi-objective optimization problem. In order to improve the convergence performance, a combining robust multi-objective optimization algorithm based on an improved NSGA-II and Monte Carlo simulation is designed, and then a tactical basic flight maneuver (BFM) is presented to generate weapon delivery trajectory. The proposed approach is demonstrated on a typical air-to-ground attack mission scenario. The simulated results show that the proposed approach is capable of generating the robust and optimal weapon delivery trajectories efficiently.</abstract><pub>IEEE</pub><doi>10.1109/IHMSC.2012.163</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467319027
ispartof 2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, 2012, Vol.2, p.279-283
issn
language eng
recordid cdi_ieee_primary_6305777
source IEEE Electronic Library (IEL) Conference Proceedings
subjects basic flight maneuver
Monte Carlo methods
non-dominated sorting genetic algorithm
Pareto optimization
Planning
robust multi-objective optimization
Robustness
Trajectory
weapon delivery
Weapons
title Robust Multi-objective Optimization Based on NSGA-II for UCAV Weapon Delivery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20Multi-objective%20Optimization%20Based%20on%20NSGA-II%20for%20UCAV%20Weapon%20Delivery&rft.btitle=2012%204th%20International%20Conference%20on%20Intelligent%20Human-Machine%20Systems%20and%20Cybernetics&rft.au=Xueqiang%20Gu&rft.date=2012-08&rft.volume=2&rft.spage=279&rft.epage=283&rft.pages=279-283&rft.isbn=9781467319027&rft.isbn_list=1467319023&rft.coden=IEEPAD&rft_id=info:doi/10.1109/IHMSC.2012.163&rft_dat=%3Cieee_6IE%3E6305777%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6305777&rfr_iscdi=true