Land-Cover Mapping by Markov Modeling of Spatial-Contextual Information in Very-High-Resolution Remote Sensing Images
Markov models represent a wide and general family of stochastic models for the temporal and spatial dependence properties associated to 1-D and multidimensional random sequences or random fields. Their applications range over a wide variety of subareas of the information and communication technology...
Gespeichert in:
Veröffentlicht in: | Proceedings of the IEEE 2013-03, Vol.101 (3), p.631-651 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 651 |
---|---|
container_issue | 3 |
container_start_page | 631 |
container_title | Proceedings of the IEEE |
container_volume | 101 |
creator | Moser, Gabriele Serpico, Sebastiano B. Benediktsson, Jon Atli |
description | Markov models represent a wide and general family of stochastic models for the temporal and spatial dependence properties associated to 1-D and multidimensional random sequences or random fields. Their applications range over a wide variety of subareas of the information and communication technology (ICT) field, including networking, automation, speech processing, genomic-sequence analysis, or image processing. Focusing on the applicative problem of land-cover mapping from very-high-resolution (VHR) remote sensing images, which is a relevant problem in many applications of environmental monitoring and natural resource exploitation, Markov models convey a great potential, thanks to their capability to effectively describe and incorporate the spatial information associated with image data into an image-classification process. In this framework, the main ideas and previous work about Markov modeling for VHR image classification will be recalled in this paper and processing results obtained through recent methods proposed by the authors will be discussed. |
doi_str_mv | 10.1109/JPROC.2012.2211551 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6304904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6304904</ieee_id><sourcerecordid>1323233343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-7cdfe01b2381cd344f4d4c958d09b87529224568729ef69efcfa169d5f5485dd3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EEkvhD5RLJC5csthjO4mPaEXpoq1abUuvljceLymJHeykYv893m7FgQuyrBk9fW-kmUfIOaNLxqj69O1me71aAmWwBGBMSvaCLHJpSgBZvSQLSllTKmDqNXmT0gOllMuKL8i8Md6Wq_CIsbgy49j5fbE75Db-DI_FVbDYH6XgitvRTJ3pM-sn_D3Npi_W3oU4ZDn4ovPFPcZDedntf5RbTKGfn_QtDmHC4hZ9Og5aD2aP6S155Uyf8N1zPSPfL77crS7LzfXX9erzpmyFqqeybq1DynbAG9ZaLoQTVrRKNpaqXVNLUABCVk0NCl2Vf-sMq5SVTopGWsvPyMfT3DGGXzOmSQ9darHvjccwJ83qChiHuqb_Rznkx7ngGf3wD_oQ5ujzIpqBYlW-tZSZghPVxpBSRKfH2A0mHjSj-hiafgpNH0PTz6Fl0_uTqUPEv4aKU6Go4H8APIWSkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1291600155</pqid></control><display><type>article</type><title>Land-Cover Mapping by Markov Modeling of Spatial-Contextual Information in Very-High-Resolution Remote Sensing Images</title><source>IEEE Electronic Library (IEL)</source><creator>Moser, Gabriele ; Serpico, Sebastiano B. ; Benediktsson, Jon Atli</creator><creatorcontrib>Moser, Gabriele ; Serpico, Sebastiano B. ; Benediktsson, Jon Atli</creatorcontrib><description>Markov models represent a wide and general family of stochastic models for the temporal and spatial dependence properties associated to 1-D and multidimensional random sequences or random fields. Their applications range over a wide variety of subareas of the information and communication technology (ICT) field, including networking, automation, speech processing, genomic-sequence analysis, or image processing. Focusing on the applicative problem of land-cover mapping from very-high-resolution (VHR) remote sensing images, which is a relevant problem in many applications of environmental monitoring and natural resource exploitation, Markov models convey a great potential, thanks to their capability to effectively describe and incorporate the spatial information associated with image data into an image-classification process. In this framework, the main ideas and previous work about Markov modeling for VHR image classification will be recalled in this paper and processing results obtained through recent methods proposed by the authors will be discussed.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2012.2211551</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computational modeling ; Data fusion ; Focusing ; Image classification ; Image segmentation ; Land cover ; land-cover mapping ; Mapping ; Markov models ; Markov processes ; Markov random fields ; Mathematical models ; Remote sensing ; remote sensing image classification ; Spatial resolution ; Speech processing ; Stochastic models</subject><ispartof>Proceedings of the IEEE, 2013-03, Vol.101 (3), p.631-651</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-7cdfe01b2381cd344f4d4c958d09b87529224568729ef69efcfa169d5f5485dd3</citedby><cites>FETCH-LOGICAL-c497t-7cdfe01b2381cd344f4d4c958d09b87529224568729ef69efcfa169d5f5485dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6304904$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6304904$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Moser, Gabriele</creatorcontrib><creatorcontrib>Serpico, Sebastiano B.</creatorcontrib><creatorcontrib>Benediktsson, Jon Atli</creatorcontrib><title>Land-Cover Mapping by Markov Modeling of Spatial-Contextual Information in Very-High-Resolution Remote Sensing Images</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><description>Markov models represent a wide and general family of stochastic models for the temporal and spatial dependence properties associated to 1-D and multidimensional random sequences or random fields. Their applications range over a wide variety of subareas of the information and communication technology (ICT) field, including networking, automation, speech processing, genomic-sequence analysis, or image processing. Focusing on the applicative problem of land-cover mapping from very-high-resolution (VHR) remote sensing images, which is a relevant problem in many applications of environmental monitoring and natural resource exploitation, Markov models convey a great potential, thanks to their capability to effectively describe and incorporate the spatial information associated with image data into an image-classification process. In this framework, the main ideas and previous work about Markov modeling for VHR image classification will be recalled in this paper and processing results obtained through recent methods proposed by the authors will be discussed.</description><subject>Computational modeling</subject><subject>Data fusion</subject><subject>Focusing</subject><subject>Image classification</subject><subject>Image segmentation</subject><subject>Land cover</subject><subject>land-cover mapping</subject><subject>Mapping</subject><subject>Markov models</subject><subject>Markov processes</subject><subject>Markov random fields</subject><subject>Mathematical models</subject><subject>Remote sensing</subject><subject>remote sensing image classification</subject><subject>Spatial resolution</subject><subject>Speech processing</subject><subject>Stochastic models</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkUFv1DAQhS0EEkvhD5RLJC5csthjO4mPaEXpoq1abUuvljceLymJHeykYv893m7FgQuyrBk9fW-kmUfIOaNLxqj69O1me71aAmWwBGBMSvaCLHJpSgBZvSQLSllTKmDqNXmT0gOllMuKL8i8Md6Wq_CIsbgy49j5fbE75Db-DI_FVbDYH6XgitvRTJ3pM-sn_D3Npi_W3oU4ZDn4ovPFPcZDedntf5RbTKGfn_QtDmHC4hZ9Og5aD2aP6S155Uyf8N1zPSPfL77crS7LzfXX9erzpmyFqqeybq1DynbAG9ZaLoQTVrRKNpaqXVNLUABCVk0NCl2Vf-sMq5SVTopGWsvPyMfT3DGGXzOmSQ9darHvjccwJ83qChiHuqb_Rznkx7ngGf3wD_oQ5ujzIpqBYlW-tZSZghPVxpBSRKfH2A0mHjSj-hiafgpNH0PTz6Fl0_uTqUPEv4aKU6Go4H8APIWSkg</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Moser, Gabriele</creator><creator>Serpico, Sebastiano B.</creator><creator>Benediktsson, Jon Atli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130301</creationdate><title>Land-Cover Mapping by Markov Modeling of Spatial-Contextual Information in Very-High-Resolution Remote Sensing Images</title><author>Moser, Gabriele ; Serpico, Sebastiano B. ; Benediktsson, Jon Atli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-7cdfe01b2381cd344f4d4c958d09b87529224568729ef69efcfa169d5f5485dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computational modeling</topic><topic>Data fusion</topic><topic>Focusing</topic><topic>Image classification</topic><topic>Image segmentation</topic><topic>Land cover</topic><topic>land-cover mapping</topic><topic>Mapping</topic><topic>Markov models</topic><topic>Markov processes</topic><topic>Markov random fields</topic><topic>Mathematical models</topic><topic>Remote sensing</topic><topic>remote sensing image classification</topic><topic>Spatial resolution</topic><topic>Speech processing</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moser, Gabriele</creatorcontrib><creatorcontrib>Serpico, Sebastiano B.</creatorcontrib><creatorcontrib>Benediktsson, Jon Atli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Moser, Gabriele</au><au>Serpico, Sebastiano B.</au><au>Benediktsson, Jon Atli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Land-Cover Mapping by Markov Modeling of Spatial-Contextual Information in Very-High-Resolution Remote Sensing Images</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>2013-03-01</date><risdate>2013</risdate><volume>101</volume><issue>3</issue><spage>631</spage><epage>651</epage><pages>631-651</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>Markov models represent a wide and general family of stochastic models for the temporal and spatial dependence properties associated to 1-D and multidimensional random sequences or random fields. Their applications range over a wide variety of subareas of the information and communication technology (ICT) field, including networking, automation, speech processing, genomic-sequence analysis, or image processing. Focusing on the applicative problem of land-cover mapping from very-high-resolution (VHR) remote sensing images, which is a relevant problem in many applications of environmental monitoring and natural resource exploitation, Markov models convey a great potential, thanks to their capability to effectively describe and incorporate the spatial information associated with image data into an image-classification process. In this framework, the main ideas and previous work about Markov modeling for VHR image classification will be recalled in this paper and processing results obtained through recent methods proposed by the authors will be discussed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JPROC.2012.2211551</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9219 |
ispartof | Proceedings of the IEEE, 2013-03, Vol.101 (3), p.631-651 |
issn | 0018-9219 1558-2256 |
language | eng |
recordid | cdi_ieee_primary_6304904 |
source | IEEE Electronic Library (IEL) |
subjects | Computational modeling Data fusion Focusing Image classification Image segmentation Land cover land-cover mapping Mapping Markov models Markov processes Markov random fields Mathematical models Remote sensing remote sensing image classification Spatial resolution Speech processing Stochastic models |
title | Land-Cover Mapping by Markov Modeling of Spatial-Contextual Information in Very-High-Resolution Remote Sensing Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A36%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Land-Cover%20Mapping%20by%20Markov%20Modeling%20of%20Spatial-Contextual%20Information%20in%20Very-High-Resolution%20Remote%20Sensing%20Images&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Moser,%20Gabriele&rft.date=2013-03-01&rft.volume=101&rft.issue=3&rft.spage=631&rft.epage=651&rft.pages=631-651&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2012.2211551&rft_dat=%3Cproquest_RIE%3E1323233343%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1291600155&rft_id=info:pmid/&rft_ieee_id=6304904&rfr_iscdi=true |