Land-Cover Mapping by Markov Modeling of Spatial-Contextual Information in Very-High-Resolution Remote Sensing Images

Markov models represent a wide and general family of stochastic models for the temporal and spatial dependence properties associated to 1-D and multidimensional random sequences or random fields. Their applications range over a wide variety of subareas of the information and communication technology...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IEEE 2013-03, Vol.101 (3), p.631-651
Hauptverfasser: Moser, Gabriele, Serpico, Sebastiano B., Benediktsson, Jon Atli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 651
container_issue 3
container_start_page 631
container_title Proceedings of the IEEE
container_volume 101
creator Moser, Gabriele
Serpico, Sebastiano B.
Benediktsson, Jon Atli
description Markov models represent a wide and general family of stochastic models for the temporal and spatial dependence properties associated to 1-D and multidimensional random sequences or random fields. Their applications range over a wide variety of subareas of the information and communication technology (ICT) field, including networking, automation, speech processing, genomic-sequence analysis, or image processing. Focusing on the applicative problem of land-cover mapping from very-high-resolution (VHR) remote sensing images, which is a relevant problem in many applications of environmental monitoring and natural resource exploitation, Markov models convey a great potential, thanks to their capability to effectively describe and incorporate the spatial information associated with image data into an image-classification process. In this framework, the main ideas and previous work about Markov modeling for VHR image classification will be recalled in this paper and processing results obtained through recent methods proposed by the authors will be discussed.
doi_str_mv 10.1109/JPROC.2012.2211551
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6304904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6304904</ieee_id><sourcerecordid>1323233343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-7cdfe01b2381cd344f4d4c958d09b87529224568729ef69efcfa169d5f5485dd3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EEkvhD5RLJC5csthjO4mPaEXpoq1abUuvljceLymJHeykYv893m7FgQuyrBk9fW-kmUfIOaNLxqj69O1me71aAmWwBGBMSvaCLHJpSgBZvSQLSllTKmDqNXmT0gOllMuKL8i8Md6Wq_CIsbgy49j5fbE75Db-DI_FVbDYH6XgitvRTJ3pM-sn_D3Npi_W3oU4ZDn4ovPFPcZDedntf5RbTKGfn_QtDmHC4hZ9Og5aD2aP6S155Uyf8N1zPSPfL77crS7LzfXX9erzpmyFqqeybq1DynbAG9ZaLoQTVrRKNpaqXVNLUABCVk0NCl2Vf-sMq5SVTopGWsvPyMfT3DGGXzOmSQ9darHvjccwJ83qChiHuqb_Rznkx7ngGf3wD_oQ5ujzIpqBYlW-tZSZghPVxpBSRKfH2A0mHjSj-hiafgpNH0PTz6Fl0_uTqUPEv4aKU6Go4H8APIWSkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1291600155</pqid></control><display><type>article</type><title>Land-Cover Mapping by Markov Modeling of Spatial-Contextual Information in Very-High-Resolution Remote Sensing Images</title><source>IEEE Electronic Library (IEL)</source><creator>Moser, Gabriele ; Serpico, Sebastiano B. ; Benediktsson, Jon Atli</creator><creatorcontrib>Moser, Gabriele ; Serpico, Sebastiano B. ; Benediktsson, Jon Atli</creatorcontrib><description>Markov models represent a wide and general family of stochastic models for the temporal and spatial dependence properties associated to 1-D and multidimensional random sequences or random fields. Their applications range over a wide variety of subareas of the information and communication technology (ICT) field, including networking, automation, speech processing, genomic-sequence analysis, or image processing. Focusing on the applicative problem of land-cover mapping from very-high-resolution (VHR) remote sensing images, which is a relevant problem in many applications of environmental monitoring and natural resource exploitation, Markov models convey a great potential, thanks to their capability to effectively describe and incorporate the spatial information associated with image data into an image-classification process. In this framework, the main ideas and previous work about Markov modeling for VHR image classification will be recalled in this paper and processing results obtained through recent methods proposed by the authors will be discussed.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2012.2211551</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computational modeling ; Data fusion ; Focusing ; Image classification ; Image segmentation ; Land cover ; land-cover mapping ; Mapping ; Markov models ; Markov processes ; Markov random fields ; Mathematical models ; Remote sensing ; remote sensing image classification ; Spatial resolution ; Speech processing ; Stochastic models</subject><ispartof>Proceedings of the IEEE, 2013-03, Vol.101 (3), p.631-651</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-7cdfe01b2381cd344f4d4c958d09b87529224568729ef69efcfa169d5f5485dd3</citedby><cites>FETCH-LOGICAL-c497t-7cdfe01b2381cd344f4d4c958d09b87529224568729ef69efcfa169d5f5485dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6304904$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6304904$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Moser, Gabriele</creatorcontrib><creatorcontrib>Serpico, Sebastiano B.</creatorcontrib><creatorcontrib>Benediktsson, Jon Atli</creatorcontrib><title>Land-Cover Mapping by Markov Modeling of Spatial-Contextual Information in Very-High-Resolution Remote Sensing Images</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><description>Markov models represent a wide and general family of stochastic models for the temporal and spatial dependence properties associated to 1-D and multidimensional random sequences or random fields. Their applications range over a wide variety of subareas of the information and communication technology (ICT) field, including networking, automation, speech processing, genomic-sequence analysis, or image processing. Focusing on the applicative problem of land-cover mapping from very-high-resolution (VHR) remote sensing images, which is a relevant problem in many applications of environmental monitoring and natural resource exploitation, Markov models convey a great potential, thanks to their capability to effectively describe and incorporate the spatial information associated with image data into an image-classification process. In this framework, the main ideas and previous work about Markov modeling for VHR image classification will be recalled in this paper and processing results obtained through recent methods proposed by the authors will be discussed.</description><subject>Computational modeling</subject><subject>Data fusion</subject><subject>Focusing</subject><subject>Image classification</subject><subject>Image segmentation</subject><subject>Land cover</subject><subject>land-cover mapping</subject><subject>Mapping</subject><subject>Markov models</subject><subject>Markov processes</subject><subject>Markov random fields</subject><subject>Mathematical models</subject><subject>Remote sensing</subject><subject>remote sensing image classification</subject><subject>Spatial resolution</subject><subject>Speech processing</subject><subject>Stochastic models</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkUFv1DAQhS0EEkvhD5RLJC5csthjO4mPaEXpoq1abUuvljceLymJHeykYv893m7FgQuyrBk9fW-kmUfIOaNLxqj69O1me71aAmWwBGBMSvaCLHJpSgBZvSQLSllTKmDqNXmT0gOllMuKL8i8Md6Wq_CIsbgy49j5fbE75Db-DI_FVbDYH6XgitvRTJ3pM-sn_D3Npi_W3oU4ZDn4ovPFPcZDedntf5RbTKGfn_QtDmHC4hZ9Og5aD2aP6S155Uyf8N1zPSPfL77crS7LzfXX9erzpmyFqqeybq1DynbAG9ZaLoQTVrRKNpaqXVNLUABCVk0NCl2Vf-sMq5SVTopGWsvPyMfT3DGGXzOmSQ9darHvjccwJ83qChiHuqb_Rznkx7ngGf3wD_oQ5ujzIpqBYlW-tZSZghPVxpBSRKfH2A0mHjSj-hiafgpNH0PTz6Fl0_uTqUPEv4aKU6Go4H8APIWSkg</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Moser, Gabriele</creator><creator>Serpico, Sebastiano B.</creator><creator>Benediktsson, Jon Atli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130301</creationdate><title>Land-Cover Mapping by Markov Modeling of Spatial-Contextual Information in Very-High-Resolution Remote Sensing Images</title><author>Moser, Gabriele ; Serpico, Sebastiano B. ; Benediktsson, Jon Atli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-7cdfe01b2381cd344f4d4c958d09b87529224568729ef69efcfa169d5f5485dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computational modeling</topic><topic>Data fusion</topic><topic>Focusing</topic><topic>Image classification</topic><topic>Image segmentation</topic><topic>Land cover</topic><topic>land-cover mapping</topic><topic>Mapping</topic><topic>Markov models</topic><topic>Markov processes</topic><topic>Markov random fields</topic><topic>Mathematical models</topic><topic>Remote sensing</topic><topic>remote sensing image classification</topic><topic>Spatial resolution</topic><topic>Speech processing</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moser, Gabriele</creatorcontrib><creatorcontrib>Serpico, Sebastiano B.</creatorcontrib><creatorcontrib>Benediktsson, Jon Atli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Moser, Gabriele</au><au>Serpico, Sebastiano B.</au><au>Benediktsson, Jon Atli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Land-Cover Mapping by Markov Modeling of Spatial-Contextual Information in Very-High-Resolution Remote Sensing Images</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>2013-03-01</date><risdate>2013</risdate><volume>101</volume><issue>3</issue><spage>631</spage><epage>651</epage><pages>631-651</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>Markov models represent a wide and general family of stochastic models for the temporal and spatial dependence properties associated to 1-D and multidimensional random sequences or random fields. Their applications range over a wide variety of subareas of the information and communication technology (ICT) field, including networking, automation, speech processing, genomic-sequence analysis, or image processing. Focusing on the applicative problem of land-cover mapping from very-high-resolution (VHR) remote sensing images, which is a relevant problem in many applications of environmental monitoring and natural resource exploitation, Markov models convey a great potential, thanks to their capability to effectively describe and incorporate the spatial information associated with image data into an image-classification process. In this framework, the main ideas and previous work about Markov modeling for VHR image classification will be recalled in this paper and processing results obtained through recent methods proposed by the authors will be discussed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JPROC.2012.2211551</doi><tpages>21</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9219
ispartof Proceedings of the IEEE, 2013-03, Vol.101 (3), p.631-651
issn 0018-9219
1558-2256
language eng
recordid cdi_ieee_primary_6304904
source IEEE Electronic Library (IEL)
subjects Computational modeling
Data fusion
Focusing
Image classification
Image segmentation
Land cover
land-cover mapping
Mapping
Markov models
Markov processes
Markov random fields
Mathematical models
Remote sensing
remote sensing image classification
Spatial resolution
Speech processing
Stochastic models
title Land-Cover Mapping by Markov Modeling of Spatial-Contextual Information in Very-High-Resolution Remote Sensing Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A36%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Land-Cover%20Mapping%20by%20Markov%20Modeling%20of%20Spatial-Contextual%20Information%20in%20Very-High-Resolution%20Remote%20Sensing%20Images&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Moser,%20Gabriele&rft.date=2013-03-01&rft.volume=101&rft.issue=3&rft.spage=631&rft.epage=651&rft.pages=631-651&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2012.2211551&rft_dat=%3Cproquest_RIE%3E1323233343%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1291600155&rft_id=info:pmid/&rft_ieee_id=6304904&rfr_iscdi=true