GPU and CPU Cooperative Accelaration for Face Detection on Modern Processors

Along with the inclusion of GPU cores within the same CPU die, the performance of Intel's processor-graphics has been significantly improved over earlier generation of integrated graphics. The need to efficiently harness the computational power of the GPU in the same CPU die is more than ever....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Li, E., Bin Wang, Liu Yang, Ya-ti Peng, Yangzhou Du, Yimin Zhang, Yi-Jen Chiu
Format: Tagungsbericht
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 775
container_issue
container_start_page 769
container_title
container_volume
creator Li, E.
Bin Wang
Liu Yang
Ya-ti Peng
Yangzhou Du
Yimin Zhang
Yi-Jen Chiu
description Along with the inclusion of GPU cores within the same CPU die, the performance of Intel's processor-graphics has been significantly improved over earlier generation of integrated graphics. The need to efficiently harness the computational power of the GPU in the same CPU die is more than ever. This paper presents a highly optimized Haar-based face detector which efficiently exploits both CPU and GPU computing power on the latest Sandy Bridge processor. The classification procedure of Haar-based cascade detector is partitioned to two phases in order to leverage both thread level and data level parallelism in the GPU. The image downscaling and integral image calculation running in the CPU core can work with the GPU in parallel. Compared to CPU-alone implementation, the experiments show that our proposed GPU accelerated implementation achieves a 3.07x speedup with more than 50% power reduction on the latest Sandy Bridge processor. On the other hand, our implementation is also more efficient than the CUDA implementation on the NVidia GT430 card in terms of performance as well as power. In addition, our proposed method presents a general approach for task partitioning between CPU and GPU, thus being beneficial not only for face detection but also for other multimedia and computer vision techniques.
doi_str_mv 10.1109/ICME.2012.121
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6298496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6298496</ieee_id><sourcerecordid>6298496</sourcerecordid><originalsourceid>FETCH-LOGICAL-i156t-c8c33108ebee7cf6da02416fbf533e66cbf8ac09743b306c4370c7e178d4c8753</originalsourceid><addsrcrecordid>eNo9TMtKw0AUHV9gqVm6cjM_kDg3M5nHssS2FlLswoK7Mrm5gUjNlEkQ_HtjFQ8HDufBYeweRAYg3OOm3C6zXECeQQ4XLHHGCqNdoQyAumQzcKpIjbVvV-cOlDYSdOHE9X9n4JYlw_AuJkyLXOgZq9a7Pfd9w8tJyxBOFP3YfRJfINLR_5jQ8zZEvvJI_IlGwnM0cRsaij3fxYA0DCEOd-ym9ceBkj-ds_1q-Vo-p9XLelMuqrSDQo8pWpQShKWayGCrGy9yBbqt20JK0hrr1noUzihZS6FRSSPQEBjbKLSmkHP28PvbEdHhFLsPH78OOndWOS2_AYnqUZ0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>GPU and CPU Cooperative Accelaration for Face Detection on Modern Processors</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Li, E. ; Bin Wang ; Liu Yang ; Ya-ti Peng ; Yangzhou Du ; Yimin Zhang ; Yi-Jen Chiu</creator><creatorcontrib>Li, E. ; Bin Wang ; Liu Yang ; Ya-ti Peng ; Yangzhou Du ; Yimin Zhang ; Yi-Jen Chiu</creatorcontrib><description>Along with the inclusion of GPU cores within the same CPU die, the performance of Intel's processor-graphics has been significantly improved over earlier generation of integrated graphics. The need to efficiently harness the computational power of the GPU in the same CPU die is more than ever. This paper presents a highly optimized Haar-based face detector which efficiently exploits both CPU and GPU computing power on the latest Sandy Bridge processor. The classification procedure of Haar-based cascade detector is partitioned to two phases in order to leverage both thread level and data level parallelism in the GPU. The image downscaling and integral image calculation running in the CPU core can work with the GPU in parallel. Compared to CPU-alone implementation, the experiments show that our proposed GPU accelerated implementation achieves a 3.07x speedup with more than 50% power reduction on the latest Sandy Bridge processor. On the other hand, our implementation is also more efficient than the CUDA implementation on the NVidia GT430 card in terms of performance as well as power. In addition, our proposed method presents a general approach for task partitioning between CPU and GPU, thus being beneficial not only for face detection but also for other multimedia and computer vision techniques.</description><identifier>ISSN: 1945-7871</identifier><identifier>ISBN: 9781467316590</identifier><identifier>ISBN: 1467316598</identifier><identifier>EISSN: 1945-788X</identifier><identifier>EISBN: 9780769547114</identifier><identifier>EISBN: 0769547117</identifier><identifier>DOI: 10.1109/ICME.2012.121</identifier><identifier>CODEN: IEEPAD</identifier><language>eng ; jpn</language><publisher>IEEE</publisher><subject>Computer architecture ; CPU cooperative computing ; Face detection ; Feature extraction ; GenX GPU architecture ; GPU ; Graphics processing unit ; Haar feature ; Instruction sets ; Parallel processing</subject><ispartof>2012 IEEE International Conference on Multimedia and Expo, 2012, p.769-775</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6298496$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6298496$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, E.</creatorcontrib><creatorcontrib>Bin Wang</creatorcontrib><creatorcontrib>Liu Yang</creatorcontrib><creatorcontrib>Ya-ti Peng</creatorcontrib><creatorcontrib>Yangzhou Du</creatorcontrib><creatorcontrib>Yimin Zhang</creatorcontrib><creatorcontrib>Yi-Jen Chiu</creatorcontrib><title>GPU and CPU Cooperative Accelaration for Face Detection on Modern Processors</title><title>2012 IEEE International Conference on Multimedia and Expo</title><addtitle>icme</addtitle><description>Along with the inclusion of GPU cores within the same CPU die, the performance of Intel's processor-graphics has been significantly improved over earlier generation of integrated graphics. The need to efficiently harness the computational power of the GPU in the same CPU die is more than ever. This paper presents a highly optimized Haar-based face detector which efficiently exploits both CPU and GPU computing power on the latest Sandy Bridge processor. The classification procedure of Haar-based cascade detector is partitioned to two phases in order to leverage both thread level and data level parallelism in the GPU. The image downscaling and integral image calculation running in the CPU core can work with the GPU in parallel. Compared to CPU-alone implementation, the experiments show that our proposed GPU accelerated implementation achieves a 3.07x speedup with more than 50% power reduction on the latest Sandy Bridge processor. On the other hand, our implementation is also more efficient than the CUDA implementation on the NVidia GT430 card in terms of performance as well as power. In addition, our proposed method presents a general approach for task partitioning between CPU and GPU, thus being beneficial not only for face detection but also for other multimedia and computer vision techniques.</description><subject>Computer architecture</subject><subject>CPU cooperative computing</subject><subject>Face detection</subject><subject>Feature extraction</subject><subject>GenX GPU architecture</subject><subject>GPU</subject><subject>Graphics processing unit</subject><subject>Haar feature</subject><subject>Instruction sets</subject><subject>Parallel processing</subject><issn>1945-7871</issn><issn>1945-788X</issn><isbn>9781467316590</isbn><isbn>1467316598</isbn><isbn>9780769547114</isbn><isbn>0769547117</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9TMtKw0AUHV9gqVm6cjM_kDg3M5nHssS2FlLswoK7Mrm5gUjNlEkQ_HtjFQ8HDufBYeweRAYg3OOm3C6zXECeQQ4XLHHGCqNdoQyAumQzcKpIjbVvV-cOlDYSdOHE9X9n4JYlw_AuJkyLXOgZq9a7Pfd9w8tJyxBOFP3YfRJfINLR_5jQ8zZEvvJI_IlGwnM0cRsaij3fxYA0DCEOd-ym9ceBkj-ds_1q-Vo-p9XLelMuqrSDQo8pWpQShKWayGCrGy9yBbqt20JK0hrr1noUzihZS6FRSSPQEBjbKLSmkHP28PvbEdHhFLsPH78OOndWOS2_AYnqUZ0</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Li, E.</creator><creator>Bin Wang</creator><creator>Liu Yang</creator><creator>Ya-ti Peng</creator><creator>Yangzhou Du</creator><creator>Yimin Zhang</creator><creator>Yi-Jen Chiu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201207</creationdate><title>GPU and CPU Cooperative Accelaration for Face Detection on Modern Processors</title><author>Li, E. ; Bin Wang ; Liu Yang ; Ya-ti Peng ; Yangzhou Du ; Yimin Zhang ; Yi-Jen Chiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i156t-c8c33108ebee7cf6da02416fbf533e66cbf8ac09743b306c4370c7e178d4c8753</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng ; jpn</language><creationdate>2012</creationdate><topic>Computer architecture</topic><topic>CPU cooperative computing</topic><topic>Face detection</topic><topic>Feature extraction</topic><topic>GenX GPU architecture</topic><topic>GPU</topic><topic>Graphics processing unit</topic><topic>Haar feature</topic><topic>Instruction sets</topic><topic>Parallel processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, E.</creatorcontrib><creatorcontrib>Bin Wang</creatorcontrib><creatorcontrib>Liu Yang</creatorcontrib><creatorcontrib>Ya-ti Peng</creatorcontrib><creatorcontrib>Yangzhou Du</creatorcontrib><creatorcontrib>Yimin Zhang</creatorcontrib><creatorcontrib>Yi-Jen Chiu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, E.</au><au>Bin Wang</au><au>Liu Yang</au><au>Ya-ti Peng</au><au>Yangzhou Du</au><au>Yimin Zhang</au><au>Yi-Jen Chiu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>GPU and CPU Cooperative Accelaration for Face Detection on Modern Processors</atitle><btitle>2012 IEEE International Conference on Multimedia and Expo</btitle><stitle>icme</stitle><date>2012-07</date><risdate>2012</risdate><spage>769</spage><epage>775</epage><pages>769-775</pages><issn>1945-7871</issn><eissn>1945-788X</eissn><isbn>9781467316590</isbn><isbn>1467316598</isbn><eisbn>9780769547114</eisbn><eisbn>0769547117</eisbn><coden>IEEPAD</coden><abstract>Along with the inclusion of GPU cores within the same CPU die, the performance of Intel's processor-graphics has been significantly improved over earlier generation of integrated graphics. The need to efficiently harness the computational power of the GPU in the same CPU die is more than ever. This paper presents a highly optimized Haar-based face detector which efficiently exploits both CPU and GPU computing power on the latest Sandy Bridge processor. The classification procedure of Haar-based cascade detector is partitioned to two phases in order to leverage both thread level and data level parallelism in the GPU. The image downscaling and integral image calculation running in the CPU core can work with the GPU in parallel. Compared to CPU-alone implementation, the experiments show that our proposed GPU accelerated implementation achieves a 3.07x speedup with more than 50% power reduction on the latest Sandy Bridge processor. On the other hand, our implementation is also more efficient than the CUDA implementation on the NVidia GT430 card in terms of performance as well as power. In addition, our proposed method presents a general approach for task partitioning between CPU and GPU, thus being beneficial not only for face detection but also for other multimedia and computer vision techniques.</abstract><pub>IEEE</pub><doi>10.1109/ICME.2012.121</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1945-7871
ispartof 2012 IEEE International Conference on Multimedia and Expo, 2012, p.769-775
issn 1945-7871
1945-788X
language eng ; jpn
recordid cdi_ieee_primary_6298496
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer architecture
CPU cooperative computing
Face detection
Feature extraction
GenX GPU architecture
GPU
Graphics processing unit
Haar feature
Instruction sets
Parallel processing
title GPU and CPU Cooperative Accelaration for Face Detection on Modern Processors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A09%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=GPU%20and%20CPU%20Cooperative%20Accelaration%20for%20Face%20Detection%20on%20Modern%20Processors&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Multimedia%20and%20Expo&rft.au=Li,%20E.&rft.date=2012-07&rft.spage=769&rft.epage=775&rft.pages=769-775&rft.issn=1945-7871&rft.eissn=1945-788X&rft.isbn=9781467316590&rft.isbn_list=1467316598&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICME.2012.121&rft_dat=%3Cieee_6IE%3E6298496%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769547114&rft.eisbn_list=0769547117&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6298496&rfr_iscdi=true