A Scalable Algorithm for Placement of Virtual Clusters in Large Data Centers
We consider the problem of placing virtual clusters, each consisting of a set of heterogeneous virtual machines (VM) with some interrelationships due to communication needs and other dependability-induced constraints, onto physical machines (PM) in a large data center. The placement of such constrai...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 3 |
container_title | |
container_volume | |
creator | Tantawi, A. N. |
description | We consider the problem of placing virtual clusters, each consisting of a set of heterogeneous virtual machines (VM) with some interrelationships due to communication needs and other dependability-induced constraints, onto physical machines (PM) in a large data center. The placement of such constrained, networked virtual clusters, including compute, storage, and networking resources is challenging. The size of the problem forces one to resort to approximate and heuristics-based optimization techniques. We introduce a statistical approach based on importance sampling (also known as cross-entropy) to solve this placement problem. A straightforward implementation of such a technique proves inefficient. We considerably enhance the method by biasing the sampling process to incorporate communication needs and other constraints of requests to yield an efficient algorithm that is linear in the size of the data center. We investigate the quality of the results of using our algorithm on a simulated system, where we study the effects of various parameters on the solution and performance of the algorithm. |
doi_str_mv | 10.1109/MASCOTS.2012.11 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6298159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6298159</ieee_id><sourcerecordid>6298159</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d1f5a0e20c060422a767ea62278eadda2c32648023d8092cb54cd725d3f8de253</originalsourceid><addsrcrecordid>eNotjstqwzAQRUUf0DTNuotu9ANORyNLspfGfYJLCjbdhok1Tl2UuMjOon9fQ3s3Fw6HyxXiVsFaKcjv34q63DT1GkHhTM7EArUzCSC6c3GtUus0pkarC7FQBm3ijM6vxGocv2COyxSCXoiqkHVLgXaBZRH2Q-ynz4PshijfA7V84OMkh05-9HE6UZBlOI0Tx1H2R1lR3LN8oIlkOWszvRGXHYWRV_-9FM3TY1O-JNXm-bUsqqTPYUq86gwBI7RgIUUkZx2TnX9nTN4TthptmgFqn0GO7c6krXdovO4yz2j0Utz9zfbMvP2O_YHiz9ZinimT61_S0U4N</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Scalable Algorithm for Placement of Virtual Clusters in Large Data Centers</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tantawi, A. N.</creator><creatorcontrib>Tantawi, A. N.</creatorcontrib><description>We consider the problem of placing virtual clusters, each consisting of a set of heterogeneous virtual machines (VM) with some interrelationships due to communication needs and other dependability-induced constraints, onto physical machines (PM) in a large data center. The placement of such constrained, networked virtual clusters, including compute, storage, and networking resources is challenging. The size of the problem forces one to resort to approximate and heuristics-based optimization techniques. We introduce a statistical approach based on importance sampling (also known as cross-entropy) to solve this placement problem. A straightforward implementation of such a technique proves inefficient. We considerably enhance the method by biasing the sampling process to incorporate communication needs and other constraints of requests to yield an efficient algorithm that is linear in the size of the data center. We investigate the quality of the results of using our algorithm on a simulated system, where we study the effects of various parameters on the solution and performance of the algorithm.</description><identifier>ISSN: 1526-7539</identifier><identifier>ISBN: 1467324531</identifier><identifier>ISBN: 9781467324533</identifier><identifier>EISSN: 2375-0227</identifier><identifier>DOI: 10.1109/MASCOTS.2012.11</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>application placement ; Availability ; Bandwidth ; cloud management ; Clustering algorithms ; combinatorial optimization ; cross-entropy ; Delay ; importance sampling ; Indexes ; Linear programming ; Monte Carlo methods ; virtual clusters</subject><ispartof>2012 IEEE 20th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, 2012, p.3-10</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6298159$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6298159$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tantawi, A. N.</creatorcontrib><title>A Scalable Algorithm for Placement of Virtual Clusters in Large Data Centers</title><title>2012 IEEE 20th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems</title><addtitle>MASCOT</addtitle><description>We consider the problem of placing virtual clusters, each consisting of a set of heterogeneous virtual machines (VM) with some interrelationships due to communication needs and other dependability-induced constraints, onto physical machines (PM) in a large data center. The placement of such constrained, networked virtual clusters, including compute, storage, and networking resources is challenging. The size of the problem forces one to resort to approximate and heuristics-based optimization techniques. We introduce a statistical approach based on importance sampling (also known as cross-entropy) to solve this placement problem. A straightforward implementation of such a technique proves inefficient. We considerably enhance the method by biasing the sampling process to incorporate communication needs and other constraints of requests to yield an efficient algorithm that is linear in the size of the data center. We investigate the quality of the results of using our algorithm on a simulated system, where we study the effects of various parameters on the solution and performance of the algorithm.</description><subject>application placement</subject><subject>Availability</subject><subject>Bandwidth</subject><subject>cloud management</subject><subject>Clustering algorithms</subject><subject>combinatorial optimization</subject><subject>cross-entropy</subject><subject>Delay</subject><subject>importance sampling</subject><subject>Indexes</subject><subject>Linear programming</subject><subject>Monte Carlo methods</subject><subject>virtual clusters</subject><issn>1526-7539</issn><issn>2375-0227</issn><isbn>1467324531</isbn><isbn>9781467324533</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjstqwzAQRUUf0DTNuotu9ANORyNLspfGfYJLCjbdhok1Tl2UuMjOon9fQ3s3Fw6HyxXiVsFaKcjv34q63DT1GkHhTM7EArUzCSC6c3GtUus0pkarC7FQBm3ijM6vxGocv2COyxSCXoiqkHVLgXaBZRH2Q-ynz4PshijfA7V84OMkh05-9HE6UZBlOI0Tx1H2R1lR3LN8oIlkOWszvRGXHYWRV_-9FM3TY1O-JNXm-bUsqqTPYUq86gwBI7RgIUUkZx2TnX9nTN4TthptmgFqn0GO7c6krXdovO4yz2j0Utz9zfbMvP2O_YHiz9ZinimT61_S0U4N</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Tantawi, A. N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201208</creationdate><title>A Scalable Algorithm for Placement of Virtual Clusters in Large Data Centers</title><author>Tantawi, A. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d1f5a0e20c060422a767ea62278eadda2c32648023d8092cb54cd725d3f8de253</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>application placement</topic><topic>Availability</topic><topic>Bandwidth</topic><topic>cloud management</topic><topic>Clustering algorithms</topic><topic>combinatorial optimization</topic><topic>cross-entropy</topic><topic>Delay</topic><topic>importance sampling</topic><topic>Indexes</topic><topic>Linear programming</topic><topic>Monte Carlo methods</topic><topic>virtual clusters</topic><toplevel>online_resources</toplevel><creatorcontrib>Tantawi, A. N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tantawi, A. N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Scalable Algorithm for Placement of Virtual Clusters in Large Data Centers</atitle><btitle>2012 IEEE 20th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems</btitle><stitle>MASCOT</stitle><date>2012-08</date><risdate>2012</risdate><spage>3</spage><epage>10</epage><pages>3-10</pages><issn>1526-7539</issn><eissn>2375-0227</eissn><isbn>1467324531</isbn><isbn>9781467324533</isbn><coden>IEEPAD</coden><abstract>We consider the problem of placing virtual clusters, each consisting of a set of heterogeneous virtual machines (VM) with some interrelationships due to communication needs and other dependability-induced constraints, onto physical machines (PM) in a large data center. The placement of such constrained, networked virtual clusters, including compute, storage, and networking resources is challenging. The size of the problem forces one to resort to approximate and heuristics-based optimization techniques. We introduce a statistical approach based on importance sampling (also known as cross-entropy) to solve this placement problem. A straightforward implementation of such a technique proves inefficient. We considerably enhance the method by biasing the sampling process to incorporate communication needs and other constraints of requests to yield an efficient algorithm that is linear in the size of the data center. We investigate the quality of the results of using our algorithm on a simulated system, where we study the effects of various parameters on the solution and performance of the algorithm.</abstract><pub>IEEE</pub><doi>10.1109/MASCOTS.2012.11</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1526-7539 |
ispartof | 2012 IEEE 20th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, 2012, p.3-10 |
issn | 1526-7539 2375-0227 |
language | eng |
recordid | cdi_ieee_primary_6298159 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | application placement Availability Bandwidth cloud management Clustering algorithms combinatorial optimization cross-entropy Delay importance sampling Indexes Linear programming Monte Carlo methods virtual clusters |
title | A Scalable Algorithm for Placement of Virtual Clusters in Large Data Centers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A04%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Scalable%20Algorithm%20for%20Placement%20of%20Virtual%20Clusters%20in%20Large%20Data%20Centers&rft.btitle=2012%20IEEE%2020th%20International%20Symposium%20on%20Modeling,%20Analysis%20and%20Simulation%20of%20Computer%20and%20Telecommunication%20Systems&rft.au=Tantawi,%20A.%20N.&rft.date=2012-08&rft.spage=3&rft.epage=10&rft.pages=3-10&rft.issn=1526-7539&rft.eissn=2375-0227&rft.isbn=1467324531&rft.isbn_list=9781467324533&rft.coden=IEEPAD&rft_id=info:doi/10.1109/MASCOTS.2012.11&rft_dat=%3Cieee_6IE%3E6298159%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6298159&rfr_iscdi=true |