A Scalable Algorithm for Placement of Virtual Clusters in Large Data Centers

We consider the problem of placing virtual clusters, each consisting of a set of heterogeneous virtual machines (VM) with some interrelationships due to communication needs and other dependability-induced constraints, onto physical machines (PM) in a large data center. The placement of such constrai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Tantawi, A. N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 3
container_title
container_volume
creator Tantawi, A. N.
description We consider the problem of placing virtual clusters, each consisting of a set of heterogeneous virtual machines (VM) with some interrelationships due to communication needs and other dependability-induced constraints, onto physical machines (PM) in a large data center. The placement of such constrained, networked virtual clusters, including compute, storage, and networking resources is challenging. The size of the problem forces one to resort to approximate and heuristics-based optimization techniques. We introduce a statistical approach based on importance sampling (also known as cross-entropy) to solve this placement problem. A straightforward implementation of such a technique proves inefficient. We considerably enhance the method by biasing the sampling process to incorporate communication needs and other constraints of requests to yield an efficient algorithm that is linear in the size of the data center. We investigate the quality of the results of using our algorithm on a simulated system, where we study the effects of various parameters on the solution and performance of the algorithm.
doi_str_mv 10.1109/MASCOTS.2012.11
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6298159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6298159</ieee_id><sourcerecordid>6298159</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d1f5a0e20c060422a767ea62278eadda2c32648023d8092cb54cd725d3f8de253</originalsourceid><addsrcrecordid>eNotjstqwzAQRUUf0DTNuotu9ANORyNLspfGfYJLCjbdhok1Tl2UuMjOon9fQ3s3Fw6HyxXiVsFaKcjv34q63DT1GkHhTM7EArUzCSC6c3GtUus0pkarC7FQBm3ijM6vxGocv2COyxSCXoiqkHVLgXaBZRH2Q-ynz4PshijfA7V84OMkh05-9HE6UZBlOI0Tx1H2R1lR3LN8oIlkOWszvRGXHYWRV_-9FM3TY1O-JNXm-bUsqqTPYUq86gwBI7RgIUUkZx2TnX9nTN4TthptmgFqn0GO7c6krXdovO4yz2j0Utz9zfbMvP2O_YHiz9ZinimT61_S0U4N</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Scalable Algorithm for Placement of Virtual Clusters in Large Data Centers</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tantawi, A. N.</creator><creatorcontrib>Tantawi, A. N.</creatorcontrib><description>We consider the problem of placing virtual clusters, each consisting of a set of heterogeneous virtual machines (VM) with some interrelationships due to communication needs and other dependability-induced constraints, onto physical machines (PM) in a large data center. The placement of such constrained, networked virtual clusters, including compute, storage, and networking resources is challenging. The size of the problem forces one to resort to approximate and heuristics-based optimization techniques. We introduce a statistical approach based on importance sampling (also known as cross-entropy) to solve this placement problem. A straightforward implementation of such a technique proves inefficient. We considerably enhance the method by biasing the sampling process to incorporate communication needs and other constraints of requests to yield an efficient algorithm that is linear in the size of the data center. We investigate the quality of the results of using our algorithm on a simulated system, where we study the effects of various parameters on the solution and performance of the algorithm.</description><identifier>ISSN: 1526-7539</identifier><identifier>ISBN: 1467324531</identifier><identifier>ISBN: 9781467324533</identifier><identifier>EISSN: 2375-0227</identifier><identifier>DOI: 10.1109/MASCOTS.2012.11</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>application placement ; Availability ; Bandwidth ; cloud management ; Clustering algorithms ; combinatorial optimization ; cross-entropy ; Delay ; importance sampling ; Indexes ; Linear programming ; Monte Carlo methods ; virtual clusters</subject><ispartof>2012 IEEE 20th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, 2012, p.3-10</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6298159$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6298159$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tantawi, A. N.</creatorcontrib><title>A Scalable Algorithm for Placement of Virtual Clusters in Large Data Centers</title><title>2012 IEEE 20th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems</title><addtitle>MASCOT</addtitle><description>We consider the problem of placing virtual clusters, each consisting of a set of heterogeneous virtual machines (VM) with some interrelationships due to communication needs and other dependability-induced constraints, onto physical machines (PM) in a large data center. The placement of such constrained, networked virtual clusters, including compute, storage, and networking resources is challenging. The size of the problem forces one to resort to approximate and heuristics-based optimization techniques. We introduce a statistical approach based on importance sampling (also known as cross-entropy) to solve this placement problem. A straightforward implementation of such a technique proves inefficient. We considerably enhance the method by biasing the sampling process to incorporate communication needs and other constraints of requests to yield an efficient algorithm that is linear in the size of the data center. We investigate the quality of the results of using our algorithm on a simulated system, where we study the effects of various parameters on the solution and performance of the algorithm.</description><subject>application placement</subject><subject>Availability</subject><subject>Bandwidth</subject><subject>cloud management</subject><subject>Clustering algorithms</subject><subject>combinatorial optimization</subject><subject>cross-entropy</subject><subject>Delay</subject><subject>importance sampling</subject><subject>Indexes</subject><subject>Linear programming</subject><subject>Monte Carlo methods</subject><subject>virtual clusters</subject><issn>1526-7539</issn><issn>2375-0227</issn><isbn>1467324531</isbn><isbn>9781467324533</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjstqwzAQRUUf0DTNuotu9ANORyNLspfGfYJLCjbdhok1Tl2UuMjOon9fQ3s3Fw6HyxXiVsFaKcjv34q63DT1GkHhTM7EArUzCSC6c3GtUus0pkarC7FQBm3ijM6vxGocv2COyxSCXoiqkHVLgXaBZRH2Q-ynz4PshijfA7V84OMkh05-9HE6UZBlOI0Tx1H2R1lR3LN8oIlkOWszvRGXHYWRV_-9FM3TY1O-JNXm-bUsqqTPYUq86gwBI7RgIUUkZx2TnX9nTN4TthptmgFqn0GO7c6krXdovO4yz2j0Utz9zfbMvP2O_YHiz9ZinimT61_S0U4N</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Tantawi, A. N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201208</creationdate><title>A Scalable Algorithm for Placement of Virtual Clusters in Large Data Centers</title><author>Tantawi, A. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d1f5a0e20c060422a767ea62278eadda2c32648023d8092cb54cd725d3f8de253</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>application placement</topic><topic>Availability</topic><topic>Bandwidth</topic><topic>cloud management</topic><topic>Clustering algorithms</topic><topic>combinatorial optimization</topic><topic>cross-entropy</topic><topic>Delay</topic><topic>importance sampling</topic><topic>Indexes</topic><topic>Linear programming</topic><topic>Monte Carlo methods</topic><topic>virtual clusters</topic><toplevel>online_resources</toplevel><creatorcontrib>Tantawi, A. N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tantawi, A. N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Scalable Algorithm for Placement of Virtual Clusters in Large Data Centers</atitle><btitle>2012 IEEE 20th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems</btitle><stitle>MASCOT</stitle><date>2012-08</date><risdate>2012</risdate><spage>3</spage><epage>10</epage><pages>3-10</pages><issn>1526-7539</issn><eissn>2375-0227</eissn><isbn>1467324531</isbn><isbn>9781467324533</isbn><coden>IEEPAD</coden><abstract>We consider the problem of placing virtual clusters, each consisting of a set of heterogeneous virtual machines (VM) with some interrelationships due to communication needs and other dependability-induced constraints, onto physical machines (PM) in a large data center. The placement of such constrained, networked virtual clusters, including compute, storage, and networking resources is challenging. The size of the problem forces one to resort to approximate and heuristics-based optimization techniques. We introduce a statistical approach based on importance sampling (also known as cross-entropy) to solve this placement problem. A straightforward implementation of such a technique proves inefficient. We considerably enhance the method by biasing the sampling process to incorporate communication needs and other constraints of requests to yield an efficient algorithm that is linear in the size of the data center. We investigate the quality of the results of using our algorithm on a simulated system, where we study the effects of various parameters on the solution and performance of the algorithm.</abstract><pub>IEEE</pub><doi>10.1109/MASCOTS.2012.11</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1526-7539
ispartof 2012 IEEE 20th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, 2012, p.3-10
issn 1526-7539
2375-0227
language eng
recordid cdi_ieee_primary_6298159
source IEEE Electronic Library (IEL) Conference Proceedings
subjects application placement
Availability
Bandwidth
cloud management
Clustering algorithms
combinatorial optimization
cross-entropy
Delay
importance sampling
Indexes
Linear programming
Monte Carlo methods
virtual clusters
title A Scalable Algorithm for Placement of Virtual Clusters in Large Data Centers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A04%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Scalable%20Algorithm%20for%20Placement%20of%20Virtual%20Clusters%20in%20Large%20Data%20Centers&rft.btitle=2012%20IEEE%2020th%20International%20Symposium%20on%20Modeling,%20Analysis%20and%20Simulation%20of%20Computer%20and%20Telecommunication%20Systems&rft.au=Tantawi,%20A.%20N.&rft.date=2012-08&rft.spage=3&rft.epage=10&rft.pages=3-10&rft.issn=1526-7539&rft.eissn=2375-0227&rft.isbn=1467324531&rft.isbn_list=9781467324533&rft.coden=IEEPAD&rft_id=info:doi/10.1109/MASCOTS.2012.11&rft_dat=%3Cieee_6IE%3E6298159%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6298159&rfr_iscdi=true